649 resultados para toluene
Resumo:
Volatile Organic Compounds are pollutants coming mainly from activities that use fossil fuels. Within this class are the BTEX (benzene, toluene, ethylbenzene and xylenes) compounds that are considered hazardous. Among the various existing techniques for degradation of pollutants, there is advanced oxidation using H2O2 generating hidoxil radical ( OH). In this work, the mesoporous material of MCM-41 was synthesized by hydrothermal method and then was used as support, the impregnation of titanium by the method of synthesis with excess solvent to obtain the catalyst Ti-MCM-41. The catalyst was used in the reaction catalyzed removal of BTEX in water using H2O2 as oxidant. The materials were characterized by: XRD, TG/DTG, FTIR, nitrogen adsorption-desorption and FRX-EDX, in order to verify the method of impregnation of the mesoporous titanium support was effective. Catalytic tests were carried out in reactors of 20 mL containing BTEX (100.0 μg/L), H2O2 (2.0 M) and Ti-MCM-41 (2.0 g/L) in acid medium. The reaction occurred for 5 h at 60 °C and analysis were performed by gas chromatography with photoionization detector and static headspace sampler. The characterizations have proven the effectiveness of the synthesis method used and the incorporation of titanium lt in the support. The catalytic tests showed satisfactory results with conversion of more than 95 % for the studied compounds, where the catalyst 48% Ti-MCM-41 showed a higher removal efficiency of the compounds under study
Resumo:
The groundwater pollution arising due to fuel leaks gas stations has presented a problem aggravating. Increasingly studies related to environmental problems such accidents and seek to propose some solutions for the treatment of groundwater and soils that are contaminated by gasoline. This study evaluated the use of molecular sieve TiSBA-15 as a catalyst for the reaction of removing of volatile organic compounds, particularly benzene, toluene, ethylbenzene and xylenes, known as BTEX, one of the main pollutants found in groundwater. The catalyst was synthesized by the method post-synthesis techniques and characterized by XSD, TG/DTG, adsorption/desorption of N2, XRF-EDX, for checking the incorporation of titanium and formation of the structure of the catalyst. The reaction occurred with the presence of hydrogen peroxide, H2O2, in aqueous medium to form hydroxyl radicals, which are needed in the process of removal of BTEX compounds. The catalytic reaction was carried out for 5 hours at 60 °C, pH to 3.0, and analyzes of the compounds were made in a gas chromatograph with a flame detection means photoionization static headspace (HS-GC-PID). The catalytic tests have shown the efficacy of using this type of catalyst for the removal of these volatile organic compounds, having a removal rate of 90.60% in the range where the catalyst was studied TiSBA-15(5,0)
Resumo:
This work is directed to the treatment of organic compounds present in produced water from oil using electrochemical technology. The water produced is a residue of the petroleum industry are difficult to treat , since this corresponds to 98 % effluent from the effluent generated in the exploration of oil and contains various compounds such as volatile hydrocarbons (benzene, toluene, ethylbenzene and xylene), polycyclic aromatic hydrocarbons (PAHs), phenols, carboxylic acids and inorganic compounds. There are several types of treatment methodologies that residue being studied, among which are the biological processes, advanced oxidation processes (AOPs), such as electrochemical treatments electrooxidation, electrocoagulation, electrocoagulation and eletroredution. The electrochemical method is a method of little environmental impact because instead of chemical reagents uses electron through reactions of oxide-reducing transforms toxic substances into substances with less environmental impact. Thus, this paper aims to study the electrochemical behavior and elimination of the BTX (benzene, toluene and xylene) using electrode of Ti/Pt. For the experiment an electrochemical batch system consists of a continuous source, anode Ti/Pt was used, applying three densities of current (1 mA/cm2, 2,5 mA/cm2 and 5 mA/cm2). The synthetic wastewater was prepared by a solution of benzene, toluene and xylene with a concentration of 5 ppm, to evaluate the electrochemical behavior by cyclic voltammetry and polarization curves, even before assessing the removal of these compounds in solution by electrochemical oxidation. The behavior of each of the compounds was evaluated by the use of electrochemical techniques indicate that each of the compounds when evaluated by cyclic voltammetry showed partial oxidation behavior via adsorption to the surface of the Ti/Pt electrode. The adsorption of each of the present compounds depends on the solution concentration but there is the strong adsorption of xylene. However, the removal was confirmed by UV-Vis, and analysis of total organic carbon (TOC), which showed a percentage of partial oxidation (19,8 % - 99,1 % TOC removed), confirming the electrochemical behavior already observed in voltammetry and cyclic polarization curves
Resumo:
Statistics of environmental protection agencies show that the soil has been contaminated with problems often resulting from leaks, spills and accidents during exploration, refining, transportation and storage oil operations and its derivatives. These, gasoline noteworthy, verified by releasing, to get in touch with the groundwater, the compounds BTEX (benzene, toluene, ethylbenzene and xylenes), substances which are central nervous system depressants and causing leukemia. Among the processes used in remediation of soil and groundwater contaminated with organic pollutants, we highlight those that use hydrogen peroxide because they are characterized by the rapid generation of chemical species of high oxidation power, especially the hydroxyl radical ( OH), superoxide (O2 -) and peridroxil (HO2 ), among other reactive species that are capable of transforming or decomposing organic chemicals. The pH has a strong effect on the chemistry of hydrogen peroxide because the formation of different radicals directly depends on the pH of the medium. In this work, the materials MCM-41 and Co-MCM-41 were synthesized and used in the reaction of BTEX removal in aqueous media using H2O2. These materials were synthesized by the hydrothermal method and the techniques used to characterize were: XRD, TG/DTG, adsorption/desorption N2, TEM and X-Ray Fluorescence. The catalytic tests were for 5 h of reaction were carried out in reactors of 20 mL, which was accompanied by the decomposition of hydrogen peroxide by molecular absorption spectrophotometry in the UV-Vis, in addition to removal of organic compounds BTEX was performed as gas chromatography with detection photoionization and flame ionization and by static headspace sampler. The characterizations proved that the materials were successfully synthesized. The catalytic tests showed satisfactory results, and the reactions containing BTEX + Co-MCM-41 + H2O2 at pH = 12.0 had the highest percentages of removal for the compounds studied
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Groundwater contamination with benzene, toluene, ethylbenzene and xylene (BTEX) has been increasing, thus requiring an urgent development of methodologies that are able to remove or minimize the damages these compounds can cause to the environment. The biodegradation process using microorganisms has been regarded as an efficient technology to treat places contaminated with hydrocarbons, since they are able to biotransform and/or biodegrade target pollutants. To prove the efficiency of this process, besides chemical analysis, the use of biological assessments has been indicated. This work identified and selected BTEX-biodegrading microorganisms present in effluents from petroleum refinery, and evaluated the efficiency of microorganism biodegradation process for reducing genotoxic and mutagenic BTEX damage through two test-systems: Allium cepa and hepatoma tissue culture (HTC) cells. Five different non-biodegraded BTEX concentrations were evaluated in relation to biodegraded concentrations. The biodegradation process was performed in a BOO Trak Apparatus (HACH) for 20 days, using microorganisms pre-selected through enrichment. Although the biodegradation usually occurs by a consortium of different microorganisms, the consortium in this study was composed exclusively of five bacteria species and the bacteria Pseudomonas putida was held responsible for the BTEX biodegradation. The chemical analyses showed that BTEX was reduced in the biodegraded concentrations. The results obtained with genotoxicity assays, carried out with both A. cepa and HTC cells, showed that the biodegradation process was able to decrease the genotoxic damages of BTEX. By mutagenic tests, we observed a decrease in damage only to the A. cepa organism. Although no decrease in mutagenicity was observed for HTC cells, no increase of this effect after the biodegradation process was observed either. The application of pre-selected bacteria in biodegradation processes can represent a reliable and effective tool in the treatment of water contaminated with BTEX mixture. Therefore, the raw petroleum refinery effluent might be a source of hydrocarbon-biodegrading microorganisms. (c) 2010 Elsevier B.A. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conjugated polymers have been subject of great interest in the recent literature from both fundamental point of view and applied science perspective. Among the several types of conjugated polymers used in recent investigations, polythiophene and its derivatives have attracted considerable attention over the past 20 years due to their high mobility and other remarkable solid-state properties. They have potential applications in many fields, such as microelectronic devices, catalysts, organic field-effect transistors, chemical sensors, and biosensors. They have been studied as gas and volatile organic compounds (VOCs) sensors using different principles or transduction techniques, such as optical absorption, conductivity, and capacitance measurements. In this work, we report on the fabrication of gas sensors based on a conducting polymer on an interdigitated gold electrode. We use as active layer of the sensor a polythiophene derivative: poly (3-hexylthiophene) (P3HT) and analyzed its conductivity as response for exposure to dynamic flow of saturated vapors of six VOCs [n-hexane, toluene, chloroform, dichloromethane, methanol, and tetrahydrofuran (THE)]. Different responses were obtained upon exposure to all VOCs, THF gave the higher response while methanol the lower response. The influence of moisture on the measurements was also evaluated. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Photopolymerized sol-gel monolithic columns for use in capillary electrochromatography were prepared in 125 mu m i.d. polyacrylate-coated fused-silica capillaries. The polyacrylate-coating, unlike the polyimide one, is transparent to the radiation used (approximate to 370 nm), and thus, no coating removal is necessary. This is a very important particularity since intrinsic capillary column characteristics, such as flexibility and mechanical resistance, are unchanged. A mixture containing metacryloxypropyltrimethoxysilane (MPTMS) as the polymeric precursor, hydrochloric acid as the catalyst, toluene as the porogen and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (Irgacure 819) as the photoinitiator was irradiated at 370 nm for 20 min inside the capillaries to prepare the columns through sol-gel approach. The versatility and viability of the use of polyacrilate as a new capillary external coating were shown through preparation of two columns under different conditions, which were tested in electrochromatography for separation of standard mixture containing thiourea (marker compound), propylbenzene, phenanthrene and pyrene. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Automotive gasoline consists of a complex mixture of flammable and volatile hydrocarbons derived from crude oil with carbon numbers within the range of 4-12 and boiling points range of 30-225 ºC. Its composition varies with the kind of crude oil and the type of refinery process that they undergone. Aromatics hydrocarbons, in particular benzene, toluene, ethylbenzene and isomeric xylenes (BTEX) are the toxic group constituents presents. GC-FID was employed to quantify these hydrocarbons in 50 commercial gasoline samples from Piauí state. Statistical analysis techniques, such as PCA and HCA were used to analyze the data. Moreover, several validation parameters were evaluated.