944 resultados para supernovae: individual: SN 2009ip SN 2000ch
Resumo:
OBJECTIVES It is well known that Sn(2+) is a notable anti-erosive agent. There are indications that biopolymers such as chitosan can enhance the effect of Sn(2+), at least in vitro. However, little information exists about their anti-erosive/anti-abrasive in situ effects. In the present in situ study, the efficacy of Sn(2+)-containing toothpastes in the presence or absence of chitosan was tested. METHODS Ten subjects participated in the randomised crossover study, wearing mandibular appliances with human enamel specimens. Specimens were extraorally demineralised (7 days, 0.5 % citric acid, pH 2.6; 6 × 2 min/day) and intraorally exposed to toothpaste suspensions (2 × 2 min/day). Within the suspension immersion time, one half of the specimens were additionally brushed intraorally with a powered toothbrush (5 s, 2.5 N). Tested preparations were a placebo toothpaste (negative control), two experimental toothpastes (F/Sn = 1,400 ppm F(-), 3,500 ppm Sn(2+); F/Sn/chitosan = 1,400 ppm F(-), 3,500 ppm Sn(2+), 0.5 % chitosan) and an SnF2-containing gel (positive control, GelKam = 3,000 ppm Sn(2+), 1,000 ppm F(-)). Substance loss was quantified profilometrically (μm). RESULTS In the placebo group, tissue loss was 11.2 ± 4.6 (immersion in suspension) and 17.7 ± 4.7 (immersion in suspension + brushing). Immersion in each Sn(2+)-containing suspension significantly reduced tissue loss (p ≤ 0.01); after immersion in suspension + brushing, only the treatments with GelKam (5.4 ± 5.5) and with F/Sn/chitosan (9.6 ± 5.6) significantly reduced loss [both p ≤ 0.05 compared to placebo; F/Sn 12.8 ± 6.4 (not significant)] CONCLUSION Chitosan enhanced the efficacy of the Sn(2+)-containing toothpaste as an anti-erosive/anti-abrasive agent. CLINICAL RELEVANCE The use of Sn(2+)- and chitosan-containing toothpaste is a good option for symptomatic therapy in patients with regular acid impacts.
Resumo:
For preventing erosive wear in dentine, coating with adhesives has been suggested as an alternative to fluoridation. However, clinical studies have revealed limited efficacy. As there is first evidence that Sn(2+) increases bond strength of the adhesive Clearfil SE (Kuraray), the aim of the present study was to investigate whether pre-treatment with different Sn(2+)/F(-) solutions improves the durability of Clearfil SE coatings. Dentine samples (eight groups, n=16/group) were freed of smear layer (0.5% citric acid, 10 s), treated (15 s) either with no solution (control), aminefluoride (AmF, 500 ppm F(-), pH 4.5), SnCl2 (800/1600 ppm Sn(2+); pH 1.5), SnCl2/AmF (500 ppm F(-), 800 ppm Sn(2+), pH 1.5/3.0/4.5), or Elmex Erosion Protection Rinse (EP, 500 ppm F-, 800 ppm Sn(2+), pH 4.5; GABA International), then rinsed with water (15 s) and individually covered with Clearfil SE. Subsequently the specimens were subjected to an erosion/abrasion protocol consisting of 1320 cycles of immersion in 0.5% citric acid (5 °C/55 °C; 2 min) and automated brushing (15 s, 200 g, NaF-toothpaste, RDA 80). As the coatings proved stable up to 1320 cycles, 60 modified cycles (brushing time 30 min/cycle) were added. Wear was measured profilometrically. After SnCl2/AmF, pH 4.5 or EP pre-treatment all except one coating survived. In the other groups, almost all coatings were lost and there was no significant difference to the control group. Pre-treatment with a Sn(2+)/F(-) solution at pH 4.5 seems able to improve the durability of adhesive coatings, rendering these an attractive option in preventing erosive wear in dentine.
Resumo:
The determination of the Stark broadening parameters of Sn ions is useful for astrophysicists interested in the determination of the density of electrons in stellar atmospheres. In this paper, we report on the calculated values of the Stark broadening parameters for 171 lines of Sn iii arising from 4d105sns (n= 6–9), 4d105snp (n= 5, 6), 4d105p2, 4d105snd (n= 5–7), 4d105s4f and 4d105s5g. Stark linewidths and line shifts are presented for an electron density of 1023 m−3 and temperatures T= 11 000–75 000 K. These have been calculated using a semi-empirical approach, with a set of wavefunctions obtained from Hartree–Fock relativistic calculations, including core polarization effects. The results obtained have been compared with available experimental data. These can be used to consider the influence of Stark broadening effects in A-type stellar atmospheres
Resumo:
Using photocatalysis for energy applications depends, more than for environmental purposes or selective chemical synthesis, on converting as much of the solar spectrum as possible; the best photocatalyst, titania, is far from this. Many efforts are pursued to use better that spectrum in photocatalysis, by doping titania or using other materials (mainly oxides, nitrides and sulphides) to obtain a lower bandgap, even if this means decreasing the chemical potential of the electron-hole pairs. Here we introduce an alternative scheme, using an idea recently proposed for photovoltaics: the intermediate band (IB) materials. It consists in introducing in the gap of a semiconductor an intermediate level which, acting like a stepstone, allows an electron jumping from the valence band to the conduction band in two steps, each one absorbing one sub-bandgap photon. For this the IB must be partially filled, to allow both sub-bandgap transitions to proceed at comparable rates; must be made of delocalized states to minimize nonradiative recombination; and should not communicate electronically with the outer world. For photovoltaic use the optimum efficiency so achievable, over 1.5 times that given by a normal semiconductor, is obtained with an overall bandgap around 2.0 eV (which would be near-optimal also for water phtosplitting). Note that this scheme differs from the doping principle usually considered in photocatalysis, which just tries to decrease the bandgap; its aim is to keep the full bandgap chemical potential but using also lower energy photons. In the past we have proposed several IB materials based on extensively doping known semiconductors with light transition metals, checking first of all with quantum calculations that the desired IB structure results. Subsequently we have synthesized in powder form two of them: the thiospinel In2S3 and the layered compound SnS2 (having bandgaps of 2.0 and 2.2 eV respectively) where the octahedral cation is substituted at a â?10% level with vanadium, and we have verified that this substitution introduces in the absorption spectrum the sub-bandgap features predicted by the calculations. With these materials we have verified, using a simple reaction (formic acid oxidation), that the photocatalytic spectral response is indeed extended to longer wavelengths, being able to use even 700 nm photons, without largely degrading the response for above-bandgap photons (i.e. strong recombination is not induced) [3b, 4]. These materials are thus promising for efficient photoevolution of hydrogen from water; work on this is being pursued, the results of which will be presented.
Resumo:
Alcance y contenido: "Misas y Aniversaris deuhers celebrarse en la Igla. Parr[oqui]al de St. Andreu de Vallgorguina per los passats, o difunts de Casa Pujadas de dita Parr[oqui]a; distribuhidas, y distribuhits per los dotze mesos del any."
Resumo:
The reliability of Pb-free solder joints is controlled by their microstructural constituents. Therefore, knowledge of the solder microconstituents’ mechanical properties as a function of temperature is required. Sn-Ag-Cu lead-free solder alloy contains three phases: a Sn-rich phase, and the intermetallic compounds (IMCs) Cu6Sn5 and Ag3Sn. Typically, the Sn-rich phase is surrounded by a eutectic mixture of β-Sn, Cu6Sn5, and Ag3Sn. In this paper, we report on the Young’s modulus and hardness of the Cu6Sn5 and Cu3Sn IMCs, the β-Sn phase, and the eutectic compound, as measured by nanoindentation at elevated temperatures. For both the β-Sn phase and the eutectic compound, the hardness and Young’s modulus exhibited strong temperature dependence. In the case of the intermetallics, this temperature dependence is observed for Cu6Sn5, but the mechanical properties of Cu3Sn are more stable up to 200°C.