460 resultados para suction
Resumo:
Four sites located in the north-eastern region of the United States of America have been chosen to investigate the impacts of soil heterogeneity in the transport of solutes (bromide and chloride) through the vadose zone (the zone in the soil that lies below the root zone and above the permanent saturated groundwater). A recently proposed mathematical model based on the cumulative beta distribution has been deployed to compare and contrast the regions' heterogeneity from multiple sample percolation experiments. Significant differences in patterns of solute leaching were observed even over a small spatial scale, indicating that traditional sampling methods for solute transport, for example the gravity pan or suction lysimeters, or more recent inventions such as the multiple sample percolation systems may not be effective in estimating solute fluxes in soils when a significant degree of soil heterogeneity is present. Consequently, ignoring soil heterogeneity in solute transport studies will likely result in under- or overprediction of leached fluxes and potentially lead to serious pollution of soils and/or groundwater. The cumulative beta distribution technique is found to be a versatile and simple technique of gaining valuable information regarding soil heterogeneity effects on solute transport. It is also an excellent tool for guiding future decisions of experimental designs particularly in regard to the number of samples within one site and the number of sampling locations between sites required to obtain a representative estimate of field solute or drainage flux.
Resumo:
Plastic cracking of cement mortar and concrete is primarily attributable to desiccation by evaporation from unprotected surfaces. This causes high suctions (negative pressures) to develop in the pore water adjacent to these surfaces. Dissolved salts in the pore water can also contribute significantly to suctions. Quantitative expressions are available for all of the components of the total suction. The development of suctions over time is illustrated by the results of desiccation tests conducted on cement mortars, supplemented by data from the literature. It is shown that ambient conditions conducive to plastic cracking can arise almost anywhere, but that the extremely high suctions that develop in mature cement mortar and concrete do not imply that compression failures should occur A high value of fracture energy is derived from data from the desiccation tests that implies that plastic cracking is characterized by a significant zone of plastic straining or microcracking.
Resumo:
The depths of cracks in desiccating plastic concrete are estimated by considering the effects of the suction (negative pore pressure) associated with desiccation and applying five failure models derived from fracture, theories combined with theories drawn from geotechnical engineering under the assumption that plastic concrete is a frictional particulate material. The estimated crack depths vary with the depth of desiccation, the suction profile, and a small number of material parameters that depend on the model adopted and are comparatively easy to estimate accurately. Four of the models predict excessively large crack depths. The fifth, however, predicts shallower crack depths that increase with the age of the concrete and are consistent with those of analogous desiccation cracks in coal mine tailings. It thus offers a relatively robust method of estimating the depth of desiccation cracks. Confirmation of this with data for plastic concrete is clearly desirable but not possible at present.
Resumo:
Structured soils are characterized by the presence of inter- and intra-aggregate pore systems and aggregates, which show varying chemical, physical, and biological properties depending on the aggregate type and land use system. How far these aspects also affect the ion exchange processes and to what extent the interaction between the carbon distribution and kind of organic substances affect the internal soil strength as well as hydraulic properties like wettability are still under discussion. Thus, the objective of this research was to clarify the effect of soil aggregation on physical and chemical properties of structured soils at two scales: homogenized material and single aggregates. Data obtained by sequentially peeling off soil aggregates layers revealed gradients in the chemical composition from the aggregate surface to the aggregate core. In aggregates from long term untreated forest soils we found lower amounts of carbon in the external layer, while in arable soils the differentiation was not pronounced. However, soil aggregates originating from these sites exhibited a higher concentration of microbial activity in the outer aggregate layer and declined towards the interior. Furthermore, soil depth and the vegetation type affected the wettability. Aggregate strength depended. on water suction and differences in tillage treatments.
Resumo:
Predatory insects and spiders are key elements of integrated pest management (IPM) programmes in agricultural crops such as cotton. Management decisions in IPM programmes should to be based on a reliable and efficient method for counting both predators and pests. Knowledge of the temporal constraints that influence sampling is required because arthropod abundance estimates are likely to vary over a growing season and within a day. Few studies have adequately quantified this effect using the beat sheet, a potentially important sampling method. We compared the commonly used methods of suction and visual sampling to the beat sheet, with reference to an absolute cage clamp method for determining the abundance of various arthropod taxa over 5 weeks. There were significantly more entomophagous arthropods recorded using the beat sheet and cage clamp methods than by using suction or visual sampling, and these differences were more pronounced as the plants grew. In a second trial, relative estimates of entomophagous and phytophagous arthropod abundance were made using beat sheet samples collected over a day. Beat sheet estimates of the abundance of only eight of the 43 taxa examined were found to vary significantly over a day. Beat sheet sampling is recommended in further studies of arthropod abundance in cotton, but researchers and pest management advisors should bear in mind the time of season and time of day effects.
Resumo:
A novel surface electromyographic (EMG) technique was recently described for the detection of deep cervical flexor muscle activity. Further investigation of this technique is warranted to ensure EMG activity from neighbouring muscles is not markedly influencing the signals recorded. This study compared deep cervical flexor (DCF) muscle activity with the activity of surrounding neck and jaw muscles during various anatomical movements of the neck and jaw in 10 volunteer subjects. DCF EMG activity was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the sternocleidomastoid, anterior scalene, masseter and suprahyoid muscles. Positioned in supine, subjects performed isometric cranio-cervical flexion, cervical flexion, right and left cervical rotation,jaw clench and resisted jaw opening. Across all movements examined, EMG amplitude of the DCF muscles was greatest during neck movements that would require activity of the DCF muscles, particularly during cranio-cervical flexion, their primary anatomical action. The actions of jaw clench and resisted jaw opening demonstrated significantly less DCF EMG activity than the cranio-cervical flexion action (p < 0.05). Across all other movements, the neighbouring neck and jaw muscles demonstrated greatest EMG amplitude during their respective primary anatomical actions, which occurred in the absence of increased EMG amplitude recorded from the DCF muscles. The finding of substantial EMG activity of the DCF muscles only during neck actions that would require their activity, particularly cranio-cervical flexion, and not during actions involving the jaw, provide further assurance that the majority of myoelectric signals detected from the nasopharyngeal electrode are from the DCF muscles. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The medical management of those envenomed by snakes, spiders and poisonous fish in Australia featured extensively in the writings 19th century doctors, expeditioners and anthropologists. Against the background of this introduced medical doctrine there already existed an extensive tradition of Aboriginal medical lore; techniques of heat treatment, suction, incision and the application of plant-derived pharmacological substances featured extensively in the management of envenomed victims. The application of a hair-string or grass-string ligature, suctioning of the bite-site and incision were practised in a variety of combinations. Such evolved independently of and pre-dated such practices, which were promoted extensively by immigrant European doctors in the late 19th century. Pacific scientific toxinology began in the 17th century with Don Diego de Prado y Tovar's 1606 account of ciguatera. By the end of the 19th century more than 30 papers and books had defined the natural history of Australian elapid poisoning. The medical management of snakebite in Australia was the focus of great controversy from 1860 to 1900. Dogmatic claims of the supposed antidote efficacy of intravenous ammonia by Professor G.B. Halford, and that of strychnine by Dr. Augustus Mueller, claimed mainstream medical attention. This era of potential iatrogenic disaster and dogma was brought to a conclusion by the objective experiments of Joseph Lauterer and Thomas Lane Bancroft in 1890 in Brisbane; and by those of C.J. Martin (from 1893) and Frank Tidswell (from 1898), both of Sydney. The modern era of Australian toxinology developed as a direct consequence of Calmette's discovery, in Paris in 1894, of immune serum, which was protective against snakebite. We review the key contributors and discoveries of toxinology in colonial Australia.
Resumo:
Objective: To compare the incidence of ventilator-associated pneumonia (VAP) in patients ventilated in intensive care by means of circuits humidified with a hygroscopic heat-and-moisture exchanger with a bacterial viral filter (HME) or hot-water humidification with a heater wire in both inspiratory and expiratory circuit limbs (DHW) or the inspiratory limb only (SHW). Design: A prospective, randomized trial. Setting: A metropolitan teaching hospital's general intensive care unit. Patients: Three hundred eighty-one patients requiring a minimum period of mechanical ventilation of 48 hrs. Interventions: Patients were randomized to humidification with use of an HME (n = 190), SHW (n = 94), or DHW (n = 97). Measurements and Main Results. Study end points were VAP diagnosed on the basis of Clinical Pulmonary Infection Score (CPIS) (1), HME resistance after 24 hrs of use, endotracheal tube resistance, and HME use per patient. VAP occurred with similar frequency in all groups (13%, HME; 14%, DHW; 10%, SHW; p = 0.61) and was predicted only by current smoking (adjusted odds ratio [AOR], 2.1; 95% confidence interval [CI], 1.1-3.9; p =.03) and ventilation days (AOR, 1.05; 95% Cl, 1.0-1.2; p =.001); VAP was less likely for patients with an admission diagnosis of pneumonia (AOR, 0.40; 95% Cl, 0.4-0.2; p =.04). HME resistance after 24 hrs of use measured at a gas flow of 50 L/min was 0.9 cm H2O (0.4-2.9). Endotracheal tube resistance was similar for all three groups (16-19 cm H2O min/L; p =.2), as were suction frequency, secretion thickness, and blood on suctioning (p =.32, p =.06, and p =.34, respectively). The HME use per patient per day was 1.13. Conclusions: Humidification technique does not influence either VAP incidence or secretion characteristics, but HMEs may have air-flow resistance higher than manufacturer specifications after 24 hrs of use.
Resumo:
The suction profile of a desiccating soil is dependent on the water table depth, the soil-water retention characteristics, and the climatic conditions. In this paper, an unsaturated flow model, which simulates both liquid and vapour flow, was used to investigate the effects of varying the water table depth and the evaporation rate on the evaporative fluxes from a desiccating tailings deposit under steady-state conditions. Results obtained showed that at a critical evaporation rate, beyond which evaporation is no longer dictated by climatic conditions, the matric suction profiles remain basically unchanged. The critical evaporation rate varies inversely with the water table depth. It is associated with the maximum evaporative flux that might be extracted from a soil at steady-state conditions. The time required to establish steady-state conditions is directly proportional to the water table depth, and it acquires a maximum value at the critical evaporation rate. A detailed investigation of the movement of the drying front demonstrated the significance of attaining a matric suction of about 3000 kPa on the contribution to flow in the vapour phase.
Resumo:
This paper summarises recent investigations into characterisation and performance of unbound roadbase materials carried out by Main Roads, Queensland (QDMR), on road projects across the state. Performance based tests such as the Repeated Load Triaxial (RLT) and the Wheel Tracker (WT) are the primary tools which are increasingly used by QDMR to overcome the limitations of simple specification type tests. This paper shows the inadequacy of current specification tests to rank material performance. The performance based tests show that the properties of the coarse aggregate alone are inadequate for sound performance; enable the contribution to mechanical behaviour by plastic fines with high matric suction to be assessed,- further, and facilitates ranking of material behaviour. Simple shakedown analyses undertaken yield similar material rankings. Finally, some materials from the performance based characterisation are compared with Falling Weight Deflectometer (FWD) in-service pavement performance data.
Resumo:
A study on heat pump thermodynamic characteristics has been made in the laboratory on a specially designed and instrumented air to water heat pump system. The design, using refrigerant R12, was based on the requirement to produce domestic hot water at a temperature of about 50 °C and was assembled in the laboratory. All the experimental data were fed to a microcomputer and stored on disk automatically from appropriate transducers via amplifier and 16 channel analogue to digital converters. The measurements taken were R12 pressures and temperatures, water and R12 mass flow rates, air speed, fan and compressor input powers, water and air inlet and outlet temperatures, wet and dry bulb temperatures. The time interval between the observations could be varied. The results showed, as expected, that the COP was higher at higher air inlet temperatures and at lower hot water output temperatures. The optimum air speed was found to be at a speed when the fan input power was about 4% of the condenser heat output. It was also found that the hot water can be produced at a temperature higher than the appropriate R12 condensing temperature corresponding to condensing pressure. This was achieved by condenser design to take advantage of discharge superheat and by further heating the water using heat recovery from the compressor. Of the input power to the compressor, typically about 85% was transferred to the refrigerant, 50 % by the compression work and 35% due to the heating of the refrigerant by the cylinder wall, and the remaining 15% (of the input power) was rejected to the cooling medium. The evaporator effectiveness was found to be about 75% and sensitive to the air speed. Using the data collected, a steady state computer model was developed. For given input conditions s air inlet temperature, air speed, the degree of suction superheat , water inlet and outlet temperatures; the model is capable of predicting the refrigerant cycle, compressor efficiency, evaporator effectiveness, condenser water flow rate and system Cop.
Resumo:
The soil-plant-moisture subsystem is an important component of the hydrological cycle. Over the last 20 or so years a number of computer models of varying complexity have represented this subsystem with differing degrees of success. The aim of this present work has been to improve and extend an existing model. The new model is less site specific thus allowing for the simulation of a wide range of soil types and profiles. Several processes, not included in the original model, are simulated by the inclusion of new algorithms, including: macropore flow; hysteresis and plant growth. Changes have also been made to the infiltration, water uptake and water flow algorithms. Using field data from various sources, regression equations have been derived which relate parameters in the suction-conductivity-moisture content relationships to easily measured soil properties such as particle-size distribution data. Independent tests have been performed on laboratory data produced by Hedges (1989). The parameters found by regression for the suction relationships were then used in equations describing the infiltration and macropore processes. An extensive literature review produced a new model for calculating plant growth from actual transpiration, which was itself partly determined by the root densities and leaf area indices derived by the plant growth model. The new infiltration model uses intensity/duration curves to disaggregate daily rainfall inputs into hourly amounts. The final model has been calibrated and tested against field data, and its performance compared to that of the original model. Simulations have also been carried out to investigate the effects of various parameters on infiltration, macropore flow, actual transpiration and plant growth. Qualitatively comparisons have been made between these results and data given in the literature.
Resumo:
The research objectives were:- 1.To review the literature to establish the factors which have traditionally been regarded as most crucial to the design of effectlve exhaust ventilation systems. 2. To design, construct, install and calibrate a wind tunnel. 3. To develop procedures for air velocity measurement followed by a comprehensive programme of aerodvnamic data collection and data analysis for a variety of conditions. The major research findings were:- a) The literature in the subject is inadequate. There is a particular need for a much greater understanding of the aerodynamics of the suction flow field. b) The discrepancies between the experimentally observed centre-line velocities and those predicted by conventional formulae are unacceptably large. c) There was little agreement between theoretically calculated and observed velocities in the suction zone of captor hoods. d) Improved empirical formulae for the prediction of centre-line velocity applicable to the classical geometrically shaped suction openings and the flanged condition could be (and were) derived. Further analysis of data revealed that: - i) Point velocity is directly proportional to the suction. flow rate and the ratio of the point velocity to the average face velocity is constant. ii) Both shape, and size of the suction opening are significant factors as the coordinates of their points govern the extent of the effect of the suction flow field. iii) The hypothetical ellipsoidal potential function and hyperbolic streamlines were found experimentally to be correct. iv) The effect of guide plates depends on the size, shape and the angle of fitting. The effect was to very approximately double the suction velocity but the exact effect is difficult to predict. v) The axially symmetric openings produce practically symmetric flow fields. Similarity of connection pieces between the suction opening and the main duct in each case is essential in order to induce a similar suction flow field. Additionally a pilot study was made in which an artificial extraneous air flow was created, measured and its interaction with the suction flow field measured and represented graphically.
Resumo:
Sporadic lack of consumer articles, the housing shortage, disturbances of material supply, and shortages of investment goods and of labour may be traced back to a common main cause. Shortage is constantly reproduced by specific features of the economic mechanism. The first part of the article consists of micro-analysis, mainly of the productive enterprise. Efforts to increase production may run up against ceilings of three kinds: constraints on physical resources, constraints on demand, and the budget constraint on enterprises. It is an important feature of a system which of these constraints takes effect. Resource-constrained systems can be distinguished from demand-constrained ones here. In the former, production is limited by production bottlenecks, in the latter by buyer demand. The socialist economy in its "classical" form belongs to the former type. It is related to whether the budget constraint on the enterprise is "hard" or "soft". If hard, enterprise spending is limited by its financial scope, if soft (its losses offset almost automatically) its demand becomes almost insatiable. The second part performs a macro-analysis, showing the mechanism of "suction" with the aid of a hydraulic analogy. The enterprise sector "pumps away" reserves and surpluses of the system, mainly due to the "investment hunger" that appears in the wake of expansionist efforts. Finally the article discusses briefly the interrelations between shortage and inflation.
Resumo:
Hurricane is one of the most destructive and costly natural hazard to the built environment and its impact on low-rise buildings, particularity, is beyond acceptable. The major objective of this research was to perform a parametric evaluation of internal pressure (IP) for wind-resistant design of low-rise buildings and wind-driven natural ventilation applications. For this purpose, a multi-scale experimental, i.e. full-scale at Wall of Wind (WoW) and small-scale at Boundary Layer Wind Tunnel (BLWT), and a Computational Fluid Dynamics (CFD) approach was adopted. This provided new capability to assess wind pressures realistically on internal volumes ranging from small spaces formed between roof tiles and its deck to attic to room partitions. Effects of sudden breaching, existing dominant openings on building envelopes as well as compartmentalization of building interior on the IP were systematically investigated. Results of this research indicated: (i) for sudden breaching of dominant openings, the transient overshooting response was lower than the subsequent steady state peak IP and internal volume correction for low-wind-speed testing facilities was necessary. For example a building without volume correction experienced a response four times faster and exhibited 30–40% lower mean and peak IP; (ii) for existing openings, vent openings uniformly distributed along the roof alleviated, whereas one sided openings aggravated the IP; (iii) larger dominant openings exhibited a higher IP on the building envelope, and an off-center opening on the wall exhibited (30–40%) higher IP than center located openings; (iv) compartmentalization amplified the intensity of IP and; (v) significant underneath pressure was measured for field tiles, warranting its consideration during net pressure evaluations. The study aimed at wind driven natural ventilation indicated: (i) the IP due to cross ventilation was 1.5 to 2.5 times higher for Ainlet/Aoutlet>1 compared to cases where Ainlet/Aoutlet<1, this in effect reduced the mixing of air inside the building and hence the ventilation effectiveness; (ii) the presence of multi-room partitioning increased the pressure differential and consequently the air exchange rate. Overall good agreement was found between the observed large-scale, small-scale and CFD based IP responses. Comparisons with ASCE 7-10 consistently demonstrated that the code underestimated peak positive and suction IP.