979 resultados para state-selective differential cross sections
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The differential production cross section of electrons from semileptonic heavy-flavor hadron decays has been measured at midrapidity (\y\ < 0.5) in proton-proton collisions at root s = 7 TeV with ALICE at the LHC. Electrons were measured in the transverse momentum range 0.5 < p(t) < 8 GeV/c. Predictions from a fixed-order perturbative QCD calculation with next-to-leading-log resummation agree with the data within the theoretical and experimental uncertainties. DOI: 10.1103/PhysRevD.86.112007
Resumo:
The P-T-differential inclusive production cross section of the prompt charm-strange meson D-s(+) in the rapidity range vertical bar y vertical bar < 0.5 was measured in proton-proton collisions at root s = 7 TeV at the LHC using the ALICE detector. The analysis was performed on a data sample of 2.98 x 10(8) events collected with a minimum-bias trigger. The corresponding integrated luminosity is L-int = 4.8 nb(-1). Reconstructing the decay D-s(+) -> phi pi(+) with phi -> K-K+, and its charge conjugate, about 480 D-s(+/-) mesons were counted, after selection cuts, in the transverse momentum range 2 < P-T < 12 GeV/c. The results are compared with predictions from models based on perturbative QCD. The ratios of the cross sections of four D meson species (namely D-0, D+, D*+ and D-s(+)) were determined both as a function of p(T) and integrated over p(T)after extrapolating to full p(T) range, together with the strangeness suppression factor in charm fragmentation. The obtained values are found to be compatible within uncertainties with those measured by other experiments in e(+)e(-), ep and pp interactions at various centre-of-mass energies. (C) 2012 CERN. Published by Elsevier By. All rights reserved.
Resumo:
This work reports on the photophysical properties of zinc porphyrins meso-tetrakis methylpyridiniumyl (Zn2+TMPyP) and meso-tetrakis sulfonatophenyl (Zn2+TPPS) in homogeneous aqueous solutions and in the presence of sodium dodecyl sulfate (SDS) and cetyltrimethyl ammonium bromide (CTAB) micelles. The excited-state dynamic was investigated with the Z-scan technique, UV-Vis absorption, and fluorescence spectroscopy. Photophysical parameters were obtained by analyzing the experimental data with a conventional five-energy-level diagram. The interaction of the charged side porphyrin groups with oppositely charged surfactants can reduce the electrostatic repulsion between porphyrin molecules leading to aggregation, which affected the porphyrin characteristics such as absorption cross-sections, lifetimes and quantum yields. The interaction between anionic ZnTPPS with cationic CTAB micelles induced the formation of porphyrin J-aggregates, while this effect was not observed in the interaction of ZnTMPyP with SDS micelles. This difference is, probably, due to the difference in electrostatic repulsion between the porphyrin molecules. The insights obtained by these results are important for the understanding of the photophysical behavior of porphyrins, regarding potential applications in pharmacokinetics as encapsulation of photosensitizer for drug delivery systems and in its interaction with cellular membrane.
Resumo:
Electron transfer cross sections have been measured for reactions of Ar2+ ions with Ar, N2, O2, CO2, CH4 and C2H6. Time-of-flight techniques have been used to measure both fast neutral Ar0 and fast Ar+ products from single- and double-electron transfer processes involving Ar2+ ions with 4.0 to 7.0 keV impact energies. Incident Ar2+ ions have produced by controlled electron impact ionisation of argon atoms. Reactions have been examined as a function of ionising electron energy and cross sections determined for ground state Ar2+(3P) ions. Charge transfer cross sections have been determined to be in the range of 3*10-16 cm2 for the systems examined. Double-electron transfer cross sections are the same order of magnitude as those measured for the corresponding single-electron transfer reactions. The state distribution of the reactant ion beam has been estimated and electron transfer cross sections obtained for single- and double-electron transfer reactions of metastable Ar2+ions. The magnitudes of electron transfer cross sections in individual systems are similar for both ground and metastable state Ar2+ reactions.
Resumo:
Measurements of the production of jets of particles in association with a Z boson in pp collisions at root s = 7 TeV are presented, using data corresponding to an integrated luminosity of 4.6 fb(-1) collected by the ATLAS experiment at the Large Hadron Collider. Inclusive and differential jet cross sections in Z events, with Z decaying into electron or muon pairs, are measured for jets with transverse momentum p(T) > 30 GeV and rapidity vertical bar y vertical bar < 4.4. The results are compared to next-to-leading-order perturbative QCD calculations, and to predictions from different Monte Carlo generators based on leading-order and next-to-leading-order matrix elements supplemented by parton showers.
Resumo:
Ameasurement is presented of the φ×BR(φ → K+K−) production cross section at √s = 7 TeV using pp collision data corresponding to an integrated luminosity of 383 μb−1, collected with theATLAS experiment at the LHC. Selection of φ(1020) mesons is based on the identification of charged kaons by their energy loss in the pixel detector. The differential cross section ismeasured as a function of the transverse momentum, pT,φ , and rapidity, yφ, of the φ(1020) meson in the fiducial region 500< pT,φ <1200MeV, |yφ| < 0.8, kaon pT,K > 230 MeV and kaon momentum pK < 800 MeV. The integrated φ(1020)-meson production cross section in this fiducial range is measured to be σφ×BR(φ → K+K−) = 570 ± 8 (stat) ± 66 (syst) ± 20 (lumi) μb.
Resumo:
The amino-keto tautomer of supersonic jet-cooled cytosine undergoes intersystem crossing (ISC) from the v = 0 and low-lying vibronic levels of its S1(¹ππ*) state. We investigate these ISC rates experimentally and theoretically as a function of S1 state vibrational excess energy Eexc. The S1 vibronic levels are pumped with a ~5 ns UV laser, the S1 and triplet state ion signals are separated by prompt or delayed ionization with a second UV laser pulse. After correcting the raw ISC yields for the relative S1 and T1ionization cross sections, we obtain energy dependent ISC quantum yields Q corr ISC =1% –5%. These are combined with previously measured vibronic state-specific decay rates, giving ISC rates kISC = 0.4–1.5 ⋅ 10⁹ s⁻¹, the corresponding S1⇝S0internal conversion (IC) rates are 30–100 times larger. Theoretical ISC rates are computed using SCS-CC2 methods, which predict rapid ISC from the S1; v = 0 state with kISC = 3 ⋅ 10⁹ s⁻¹ to the T1(³ππ*) triplet state. The surprisingly high rate of this El Sayed-forbidden transition is caused by a substantial admixture of ¹nOπ* character into the S1(¹ππ*) wave function at its non-planar minimum geometry. The combination of experiment and theory implies that (1) below Eexc = 550 cm⁻¹ in the S1 state, S1⇝S0internal conversion dominates the nonradiative decay with kIC ≥ 2 ⋅ 10¹⁰ s⁻¹, (2) the calculated S1⇝T1 (¹ππ*⇝³ππ*) ISC rate is in good agreement with experiment, (3) being El-Sayed forbidden, the S1⇝T1 ISC is moderately fast (kISC = 3 ⋅ 10⁹ s⁻¹), and not ultrafast, as claimed by other calculations, and (4) at Eexc ~ 550 cm⁻¹ the IC rate increases by ~50 times, probably by accessing the lowest conical intersection (the C5-twist CI) and thereby effectively switching off the ISC decay channels.
Resumo:
There exists an interest in performing pin-by-pin calculations coupled with thermal hydraulics so as to improve the accuracy of nuclear reactor analysis. In the framework of the EU NURISP project, INRNE and UPM have generated an experimental version of a few group diffusion cross sections library with discontinuity factors intended for VVER analysis at the pin level with the COBAYA3 code. The transport code APOLLO2 was used to perform the branching calculations. As a first proof of principle the library was created for fresh fuel and covers almost the full parameter space of steady state and transient conditions. The main objective is to test the calculation schemes and post-processing procedures, including multi-pin branching calculations. Two library options are being studied: one based on linear table interpolation and another one using a functional fitting of the cross sections. The libraries generated with APOLLO2 have been tested with the pin-by-pin diffusion model in COBAYA3 including discontinuity factors; first comparing 2D results against the APOLLO2 reference solutions and afterwards using the libraries to compute a 3D assembly problem coupled with a simplified thermal-hydraulic model.
Resumo:
In the framework of the OECD/NEA project on Benchmark for Uncertainty Analysis in Modeling (UAM) for Design, Operation, and Safety Analysis of LWRs, several approaches and codes are being used to deal with the exercises proposed in Phase I, “Specifications and Support Data for Neutronics Cases.” At UPM, our research group treats these exercises with sensitivity calculations and the “sandwich formula” to propagate cross-section uncertainties. Two different codes are employed to calculate the sensitivity coefficients of to cross sections in criticality calculations: MCNPX-2.7e and SCALE-6.1. The former uses the Differential Operator Technique and the latter uses the Adjoint-Weighted Technique. In this paper, the main results for exercise I-2 “Lattice Physics” are presented for the criticality calculations of PWR. These criticality calculations are done for a TMI fuel assembly at four different states: HZP-Unrodded, HZP-Rodded, HFP-Unrodded, and HFP-Rodded. The results of the two different codes above are presented and compared. The comparison proves a good agreement between SCALE-6.1 and MCNPX-2.7e in uncertainty that comes from the sensitivity coefficients calculated by both codes. Differences are found when the sensitivity profiles are analysed, but they do not lead to differences in the uncertainty.
Resumo:
Multigroup diffusion codes for three dimensional LWR core analysis use as input data pre-generated homogenized few group cross sections and discontinuity factors for certain combinations of state variables, such as temperatures or densities. The simplest way of compiling those data are tabulated libraries, where a grid covering the domain of state variables is defined and the homogenized cross sections are computed at the grid points. Then, during the core calculation, an interpolation algorithm is used to compute the cross sections from the table values. Since interpolation errors depend on the distance between the grid points, a determined refinement of the mesh is required to reach a target accuracy, which could lead to large data storage volume and a large number of lattice transport calculations. In this paper, a simple and effective procedure to optimize the distribution of grid points for tabulated libraries is presented. Optimality is considered in the sense of building a non-uniform point distribution with the minimum number of grid points for each state variable satisfying a given target accuracy in k-effective. The procedure consists of determining the sensitivity coefficients of k-effective to cross sections using perturbation theory; and estimating the interpolation errors committed with different mesh steps for each state variable. These results allow evaluating the influence of interpolation errors of each cross section on k-effective for any combination of state variables, and estimating the optimal distance between grid points.
Resumo:
In this work, the angular distributions for elastic and. inelastic scattering of fast neutrons in fusion .reactor materials have been studied. Lithium and lead material are likely to be common components of fusion reactor wall configuration design. The measurements were performed using an associated particle time-of- flight technique. The 14 and 14.44 Mev neutrons were produced by the T(d,n} 4He reaction with deuterons being accelerated in a 150kev SAMES type J accelerator at ASTON and in.the 3. Mev DYNAMITRON at the Joint Radiation Centre, Birmingham respectively. The associated alpha-particles and fast. neutrons were detected.by means of a plastic scintillator mounted on a fast focused photomultiplier tube. The samples used were extended flat plates of thicknesses up to 0.9 mean-free-path for Lithium and 1.562 mean-free-path for Lead. The differential elastic scattering cross-sections were measured for 14 Mev neutrons for various thicknesses of Lithium and Lead in the angular range from zero to; 90º. In addition, the angular distributions of elastically scattered 14,.44 Mev .neutrons from Lithium samples were studied in the same angular range. Inelastic scattering to the 4.63 Mev state in 7Li and the 2.6 Mev state, and 4.1 Mev state in 208Pb have:been :measured.The results are compared to ENDF/B-IV data files and to previous measurements. For the Lead samples the differential neutron scattering:cross-sections for discrete 3 Mev ranges and the angular distributions were measured. The increase in effective cross-section due to multiple scattering effects,as the sample thickness increased:was found to be predicted by the empirical .relation ....... A good fit to the exoerimental data was obtained using the universal constant............ The differential elastic scattering cross-section data for thin samples of Lithium and Lead were analyzed in terms of optical model calculations using the. computer code. RAROMP. Parameter search procedures produced good fits to the·cross-sections. For the case of thick samples of Lithium and Lead, the measured angular distributions of :the scattered neutrons were compared to the predictions of the continuous slowing down model.
Resumo:
This dissertation presents a study of the D( e, e′p)n reaction carried out at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) for a set of fixed values of four-momentum transfer Q 2 = 2.1 and 0.8 (GeV/c)2 and for missing momenta pm ranging from pm = 0.03 to pm = 0.65 GeV/c. The analysis resulted in the determination of absolute D(e,e′ p)n cross sections as a function of the recoiling neutron momentum and it's scattering angle with respect to the momentum transfer [vector] q. The angular distribution was compared to various modern theoretical predictions that also included final state interactions. The data confirmed the theoretical prediction of a strong anisotropy of final state interaction contributions at Q2 of 2.1 (GeV/c)2 while at the lower Q2 value, the anisotropy was much less pronounced. At Q2 of 0.8 (GeV/c)2, theories show a large disagreement with the experimental results. The experimental momentum distribution of the bound proton inside the deuteron has been determined for the first time at a set of fixed neutron recoil angles. The momentum distribution is directly related to the ground state wave function of the deuteron in momentum space. The high momentum part of this wave function plays a crucial role in understanding the short-range part of the nucleon-nucleon force. At Q2 = 2.1 (GeV/c)2, the momentum distribution determined at small neutron recoil angles is much less affected by FSI compared to a recoil angle of 75°. In contrast, at Q2 = 0.8 (GeV/c)2 there seems to be no region with reduced FSI for larger missing momenta. Besides the statistical errors, systematic errors of about 5–6 % were included in the final results in order to account for normalization uncertainties and uncertainties in the determi- nation of kinematic veriables. The measurements were carried out using an electron beam energy of 2.8 and 4.7 GeV with beam currents between 10 to 100 &mgr; A. The scattered electrons and the ejected protons originated from a 15cm long liquid deuterium target, and were detected in conicidence with the two high resolution spectrometers of Hall A at Jefferson Lab.^