996 resultados para startle response
Resumo:
Amelioration of sodic soils is commonly achieved by applying gypsum, which increases soil hydraulic conductivity by altering soil chemistry. The magnitude of hydraulic conductivity increases expected in response to gypsum applications depends on soil properties including clay content, clay mineralogy, and bulk density. The soil analyzed in this study was a kaolinite rich sodic clay soil from an irrigated area of the Lower Burdekin coastal floodplain in tropical North Queensland, Australia. The impact of gypsum amelioration was investigated by continuously leaching soil columns with a saturated gypsum solution, until the hydraulic conductivity and leachate chemistry stabilized. Extended leaching enabled the full impacts of electrolyte effects and cation exchange to be determined. For the columns packed to 1.4 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.41 ± 0.06 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 4.3 ± 2.12 mEq/100 g, and hydraulic conductivity increased to 0.15 ± 0.04 cm/d. For the columns packed to 1.3 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.51 ± 0.03 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 0.55 ± 0.36 mEq/100 g, and hydraulic conductivity increased to 0.96 ± 0.53 cm/d. The results of this study highlight that both sodium and magnesium need to be taken into account when determining the suitability of water quality for irrigation of sodic soils and that soil bulk density plays a major role in controlling the extent of reclamation that can be achieved using gypsum applications.
Resumo:
The size and arrangement of stromal collagen fibrils (CFs) influence the optical properties of the cornea and hence its function. The spatial arrangement of the collagen is still questionable in relation to the diameter of collagen fibril. In the present study, we introduce a new parameter, edge-fibrillar distance (EFD) to measure how two collagen fibrils are spaced with respect to their closest edges and their spatial distribution through normalized standard deviation of EFD (NSDEFD) accessed through the application of two commercially available multipurpose solutions (MPS): ReNu and Hippia. The corneal buttons were soaked separately in ReNu and Hippia MPS for five hours, fixed overnight in 2.5% glutaraldehyde containing cuprolinic blue and processed for transmission electron microscopy. The electron micrographs were processed using ImageJ user-coded plugin. Statistical analysis was performed to compare the image processed equivalent diameter (ED), inter-fibrillar distance (IFD), and EFD of the CFs of treated versus normal corneas. The ReNu-soaked cornea resulted in partly degenerated epithelium with loose hemidesmosomes and Bowman’s collagen. In contrast, the epithelium of the cornea soaked in Hippia was degenerated or lost but showed closely packed Bowman’s collagen. Soaking the corneas in both MPS caused a statistically significant decrease in the anterior collagen fibril, ED and a significant change in IFD, and EFD than those of the untreated corneas (p < 0.05, for all comparisons). The introduction of EFD measurement in the study directly provided a sense of gap between periphery of the collagen bundles, their spatial distribution; and in combination with ED, they showed how the corneal collagen bundles are spaced in relation to their diameters. The spatial distribution parameter NSDEFD indicated that ReNu treated cornea fibrils were uniformly distributed spatially, followed by normal and Hippia. The EFD measurement with relatively lower standard deviation and NSDEFD, a characteristic of uniform CFs distribution, can be an additional parameter used in evaluating collagen organization and accessing the effects of various treatments on corneal health and transparency.
Resumo:
Road agencies face growing pressure to respond to a range of issues associated with climate change and the reliance on fossil fuels. A key part of this response will be to reduce the dependency on fossil fuel based energy (and the associated greenhouse gas emissions) of transport, both vehicles and infrastructure. This paper presents findings of investigations into three key areas of innovative technologies and processes, namely the inclusion of onsite renewable energy generation technologies as part of road and transport infrastructure, the potential for automated motorways to reduce traffic fuel consumption (referred to as 'Smart Roads'), and the reduction of energy demand from route and signal lighting. The paper then concludes with the recommendation for the engineering profession to embrace sustainability performance assessment and rating tools as the basis for enhancing and communicating the contribution to Australia's response to climate change. Such tools provide a rigorous structure that can standardise approaches to key issues across entire sectors and provide clarity on the evidence required to demonstrate leading performance. The paper has been developed with funding and support provided by Australia's Sustainable Built Environment National Research Centre (SBEnrc), working with partners including Main Roads Western Australia, NSW Roads and Maritime Services, Queensland Department of Transport and Main Roads, John Holland Group, the Infrastructure Sustainability Council of Australia, Roads Australia, and the CRC for Low Carbon Living.
Resumo:
Background At Queensland University of Technology (QUT), the Bachelor of Radiation Therapy course evaluation has previously suffered from low online survey participation rates. A communal instantaneous feedback event using an audience response system (ARS) was evaluated as a potential solution to this problem. The aims of the project were to determine the extent to which this feedback event could be facilitated by ARS technology and to evaluate the impact the technology made on student satisfaction and engagement. Methods Students were invited to a timetabled session to provide feedback on individual study units and the course overall. They provided quantitative Likert-style responses to prompts for each unit and the course using an ARS as well as anonymous typed qualitative comments. Data collection was performed live so students were able to view collective class responses. This prompted further discussion and enabled a prospective action plan to be developed. To inform future ARS use, students were asked for their opinions on the feedback method. Results Despite technological difficulties, student evaluation indicated that all responders enjoyed the session and the opportunity to view the combined responses. All students felt that useful feedback was generated and that this method should be used in the future. The student attendance and response rates were high, and it was clear that the session had led to the development of some insightful qualitative feedback comments. Conclusions: An ARS contributed well to the collection of course feedback in a communal and interactive environment. Students found it enjoyable to use, and it helped to stimulate useful qualitative comments
Resumo:
Our aim is to examine evidence-based strategies to motivate appropriate action and increase informed decision-making during the response and recovery phases of disasters. We combine expertise in communication, consumer psychology and marketing, disaster and emergency management, and law. This poster presents findings from a social media work package, and preliminary findings from the focus group work package on emergency warning message comprehension.
Resumo:
Background Resistance exercise is emerging as a potential adjunct therapy to aid in the management of breast cancer-related lymphedema (BCRL). However, the mechanisms underlying the relationships between the acute and long-term benefits of resistance exercise on BCRL are not well understood. Purpose. To examine the acute inflammatory response to upper-body resistance exercise in women with BCRL and to compare these effects between resistance exercises involving low-, moderate- and high-loads. The impact on lymphoedema status and associated symptoms was also compared. Methods Twenty-one women aged 62 ± 10 years with mild to severe BCRL participated in the study. Participants completed a low-load (15-20 repetition maximum), moderate-load (10-12 repetition maximum) and high-load (6-8 repetition maximum) exercise sessions consisting of three sets of six upper-body resistance exercises. Sessions were completed in a randomized order separated by a seven to 10 day wash-out period. Venous blood samples were obtained to assess markers of exercise-induced muscle damage and inflammation (creatine kinase [CK], C-reactive protein [CRP], interleukin-6 [IL-6] and tumour necrosis factor-alpha [TNF-α]). Lymphoedema status was assessed using bioimpedance spectroscopy and arm circumferences, and associated symptoms were assessed using visual analogue scales (VAS) for pain, heaviness and tightness. Measurements were conducted before and 24 hours after the exercise sessions. Results No significant changes in CK, CRP, IL-6 and TNF-α were observed following the low-, moderate- or high-load resistance exercise sessions. There were no significant changes in arm swelling or symptom severity scores across the three resistance exercise conditions. Conclusions The magnitude of acute exercise-induced inflammation following upper-body resistance exercise in women with BCRL does not vary between resistance exercise loads. Given these observations, moderate- to high-load resistance training is recommended for this patient population as these loads prompt superior physiological and functional benefits.
Resumo:
Objective Spondyloarthritides (SpA) occur in 1% of the population and include ankylosing spondylitis (AS) and arthropathy of inflammatory bowel disease (IBD), with characteristic spondylitis, arthritis, enthesitis, and IBD. Genetic studies implicate interleukin-23 (IL-23) receptor signaling in the development of SpA and IBD, and IL-23 overexpression in mice is sufficient for enthesitis, driven by entheseal-resident T cells. However, in genetically prone individuals, it is not clear where IL-23 is produced and how it drives the SpA syndrome, including IBD or subclinical gut inflammation of AS. Moreover, it is unclear why specific tissue involvement varies between patients with SpA. We undertook this study to determine the location of IL-23 production and its role in SpA pathogenesis in BALB/c ZAP-70W163C-mutant (SKG) mice injected intraperitoneally with β-1,3-glucan (curdlan). Methods Eight weeks after curdlan injection in wild-type or IL-17A-/- SKG or BALB/c mice, pathology was scored in tissue sections. Mice were treated with anti-IL-23 or anti-IL-22. Cytokine production and endoplasmic reticulum (ER) stress were determined in affected organs. Results In curdlan-treated SKG mice, arthritis, enthesitis, and ileitis were IL-23 dependent. Enthesitis was specifically dependent on IL-17A and IL-22. IL-23 was induced in the ileum, where it amplified ER stress, goblet cell dysfunction, and proinflammatory cytokine production. IL-17A was pathogenic, while IL-22 was protective against ileitis. IL-22+CD3- innate-like cells were increased in lamina propria mononuclear cells of ileitis-resistant BALB/c mice, which developed ileitis after curdlan injection and anti-IL-22. Conclusion In response to systemic β-1,3-glucan, intestinal IL-23 provokes local mucosal dysregulation and cytokines driving the SpA syndrome, including IL-17/IL-22-dependent enthesitis. Innate IL-22 production promotes ileal tolerance.
Resumo:
Liposome-protamine-DNA nanoparticles (LPD) are safe, effective, and non-toxic adjuvants that induce Th1-like immune responses. We hypothesized that encapsulation of allergens into liposomes could be an appropriate option for immunotherapy. The present study evaluated the immunotherapeutic potential of a recombinant hybrid molecule (rHM) encapsulated in LPD nanoparticles in a murine model of Chenopodium album allergy. BALB/c mice were sensitized with the allergen in alum, and the immunotherapy procedure was performed by subcutaneous injections of LPD-rHM, rHM, or empty LPD at weekly intervals. Sensitized mice developed a Th2-biased immune response characterized by strong specific IgG1 and IgE production, IL-4, and the transcription factor GATA3 in spleen cell cultures. Treatment with the LPD-rHM resulted in a reduction in IgE and a marked increase in IgG2a. The LPD-rHM induced allergen-specific responses with relatively high interferon-gamma production, as well as expression of the transcription factor T-bet in stimulated splenocytes. In addition, lymphoproliferative responses were higher in the LPD-rHM-treated mice than in the other groups. Removal of the nanoparticles from the rHM resulted in a decrease in the allergen's immunogenicity. These results indicate that the rHM complexed with LPD nanoparticles has a marked suppressive effect on the allergic response and caused a shift toward a Th1 pathway.
Resumo:
Background and objective Individuals with chronic obstructive pulmonary disease (COPD) are at a high risk of developing significant complications from infection with the influenza virus. It is therefore vital to ensure that prophylaxis with the influenza vaccine is effective in COPD. The aim of this study was to assess the immunogenicity of the 2010 trivalent influenza vaccine in persons with COPD compared to healthy subjects without lung disease, and to examine clinical factors associated with the serological response to the vaccine. Methods In this observational study, 34 subjects (20 COPD, 14 healthy) received the 2010 influenza vaccine. Antibody titers at baseline and 28 days post-vaccination were measured using the hemagglutination inhibition assay (HAI) assay. Primary endpoints included seroconversion (≥4-fold increase in antibody titers from baseline) and the fold increase in antibody titer after vaccination. Results Persons with COPD mounted a significantly lower humoral immune response to the influenza vaccine compared to healthy participants. Seroconversion occurred in 90% of healthy participants, but only in 43% of COPD patients (P=0.036). Increasing age and previous influenza vaccination were associated with lower antibody responses. Antibody titers did not vary significantly with cigarette smoking, presence of other comorbid diseases, or COPD severity. Conclusion The humoral immune response to the 2010 influenza vaccine was lower in persons with COPD compared to non-COPD controls. The antibody response also declined with increasing age and in those with a history of prior vaccination.
Resumo:
The reactivity to a peptide from the HTLV-I polyprotein (FKLPGLNSR) and a similar sequence from myelin basic protein (MBP) (FKLGGRDSR) was examined in relation to the proposal that mimicry of MBP by HTLV-I could be involved in autoimmune responses in HTLV-I-associated myelopathy (HAM). It was found that rabbit antibodies raised against the HTLV-I peptide recognised both peptides, with a titre of 1/10240 to the HTLV-I peptide and 1/5220 to the MBP peptide. Human sera from HAM patients and a HTLV-I carrier without HAM showed slightly higher responses to the HTLV-I peptide compared to the responses from uninfected human sera. HAM patients had greater responses to the HTLV-I peptide than to the similar MBP peptide and an unrelated bovine MBP peptide. There was no recognition of the peptides by peripheral blood lymphocytes from HAM patients or a HTLV-I carrier without HAM. It was concluded that although cross-reactivity was demonstrated in rabbits and the HTLV-I peptide was recognised by sera from HAM patients, the epitope does not appear to evoke a mimicking response to the similar region in MBP. Hence it is not likely to be involved in the pathogenesis of HAM through molecular mimicry.
Resumo:
Aim: To determine whether a child with chronic wet cough and poor response to at least 4 weeks of oral antibiotics is more likely to have bronchiectasis. Methods: All chest multi-detector computerised tomography (MDCT) scans at a single paediatric tertiary hospital from April 2010 to August 2012 were reviewed retrospectively so as to identify those ordered by respiratory physicians for assessment of children with a chronic wet cough. Information regarding age, sex, ethnicity, indication for imaging and the response to at least 4 weeks of antibiotics before having the scan were recorded from their charts. The data were analysed using simple and multiple logistic regression. Results: Of the 144 (87 males) eligible children, 106 (65 males, 30 Indigenous) aged 10–199 months had MDCT scan evidence of bronchiectasis. Antibiotic data were available for 129 children. Among the 105 children with persistent cough despite at least 4 weeks of antibiotics, 88 (83.8%) had bronchiectasis, while of the 24 children whose cough resolved after antibiotics, only six (25.0%) received this diagnosis (adjusted OR 20.9; 95% CI 5.36 to 81.8). Being Indigenous was also independently associated with radiographic evidence of bronchiectasis (adjusted OR 5.86; 95% CI 1.20 to 28.5). Conclusions: Further investigations including a MDCT scan should be considered in a child with a chronic wet cough that persists following 4 weeks of oral antibiotics. However, while reducing the likelihood of underlying bronchiectasis, responding well to a single prolonged course of antibiotics does not exclude this diagnosis completely.
Resumo:
The koala (Phascolarctos cinereus) is an Australian marsupial that continues to experience significant population declines. Infectious diseases caused by pathogens such as Chlamydia are proposed to have a major role. Very few species-specific immunological reagents are available, severely hindering our ability to respond to the threat of infectious diseases in the koala. In this study, we utilise data from the sequencing of the koala transcriptome to identify key immunological markers of the koala adaptive immune response and cytokines known to be important in the host response to chlamydial infection in other species. This report describes the identification and preliminary sequence analysis of (1) T lymphocyte glycoprotein markers (CD4, CD8); (2) IL-4, a marker for the Th2 response; (3) cytokines such as IL-6, IL-12 and IL-1β, that have been shown to have a role in chlamydial clearance and pathology in other hosts; and (4) the sequences for the koala immunoglobulins, IgA, IgG, IgE and IgM. These sequences will enable the development of a range of immunological reagents for understanding the koala’s innate and adaptive immune responses, while also providing a resource that will enable continued investigations into the origin and evolution of the marsupial immune system.
Resumo:
Introduction The Skin Self-Examination Attitude Scale (SSEAS) is a brief measure that allows for the assessment of attitudes in relation to skin self-examination. This study evaluated the psychometric properties of the SSEAS using Item Response Theory (IRT) methods in a large sample of men ≥ 50 years in Queensland, Australia. Methods A sample of 831 men (420 intervention and 411 control) completed a telephone assessment at the 13-month follow-up of a randomized-controlled trial of a video-based intervention to improve skin self-examination (SSE) behaviour. Descriptive statistics (mean, standard deviation, item–total correlations, and Cronbach’s alpha) were compiled and difficulty parameters were computed with Winsteps using the polytomous Rasch Rating Scale Model (RRSM). An item person (Wright) map of the SSEAS was examined for content coverage and item targeting. Results The SSEAS have good psychometric properties including good internal consistency (Cronbach’s alpha = 0.80), fit with the model and no evidence for differential item functioning (DIF) due to experimental trial grouping was detected. Conclusions The present study confirms the SSEA scale as a brief, useful and reliable tool for assessing attitudes towards skin self-examination in a population of men 50 years or older in Queensland, Australia. The 8-item scale shows unidimensionality, allowing levels of SSE attitude, and the item difficulties, to be ranked on a single continuous scale. In terms of clinical practice, it is very important to assess skin cancer self-examination attitude to identify people who may need a more extensive intervention to allow early detection of skin cancer.
Resumo:
Pattern recognition is a promising approach for the identification of structural damage using measured dynamic data. Much of the research on pattern recognition has employed artificial neural networks (ANNs) and genetic algorithms as systematic ways of matching pattern features. The selection of a damage-sensitive and noise-insensitive pattern feature is important for all structural damage identification methods. Accordingly, a neural networks-based damage detection method using frequency response function (FRF) data is presented in this paper. This method can effectively consider uncertainties of measured data from which training patterns are generated. The proposed method reduces the dimension of the initial FRF data and transforms it into new damage indices and employs an ANN method for the actual damage localization and quantification using recognized damage patterns from the algorithm. In civil engineering applications, the measurement of dynamic response under field conditions always contains noise components from environmental factors. In order to evaluate the performance of the proposed strategy with noise polluted data, noise contaminated measurements are also introduced to the proposed algorithm. ANNs with optimal architecture give minimum training and testing errors and provide precise damage detection results. In order to maximize damage detection results, the optimal architecture of ANN is identified by defining the number of hidden layers and the number of neurons per hidden layer by a trial and error method. In real testing, the number of measurement points and the measurement locations to obtain the structure response are critical for damage detection. Therefore, optimal sensor placement to improve damage identification is also investigated herein. A finite element model of a two storey framed structure is used to train the neural network. It shows accurate performance and gives low error with simulated and noise-contaminated data for single and multiple damage cases. As a result, the proposed method can be used for structural health monitoring and damage detection, particularly for cases where the measurement data is very large. Furthermore, it is suggested that an optimal ANN architecture can detect damage occurrence with good accuracy and can provide damage quantification with reasonable accuracy under varying levels of damage.