990 resultados para stable isotopic


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The middle Paleocene through early Eocene long-term gradual warming was superimposed by several transient warming events, such as the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM2). Both events show evidence for extreme global warming associated with a major injection of carbon into the ocean-atmosphere system, but the mechanisms of carbon injection and many aspects of the environmental response are still poorly understood. In this study, we analyzed the concentration and stable carbon isotopic (d13C) composition of several sulfur-bound biomarkers derived from marine photoautotrophs, deposited in the Arctic Ocean at ~85°N, during ETM2. The presence of sulfur-bound biomarkers across this event points toward high primary productivity and anoxic bottom water conditions. The previously reported presence of isorenieratene derivatives indicates euxinic conditions in the photic zone, likely caused by a combination of enhanced primary productivity and salinity stratification. The negative carbon isotope excursion measured at the onset of ETM2 for several biomarkers, ranges between 3 per mil and 4.5 per mil, much larger than the ~1.4 per mil recorded in marine carbonates elsewhere, suggesting substantial enhanced isotopic fractionation by the primary producers likely due to a significant rise in pCO2. In the absence of biogenic carbonates in the ETM2 section of our core we use coeval planktonic d13C from elsewhere to estimate surface water d13C in the Arctic Ocean and then apply the relation between isotopic fractionation and pCO2, originally calibrated for haptophyte alkenones, to three selected organic biomarkers (i.e., S-bound phytane, C35 hopane, and a C25 highly branched isoprenoid). This yields pCO2 values potentially in the range of four times preindustrial levels. However, these estimates are uncertain because of a lack of knowledge on the importance of pCO2 on photosynthetic isotopic fractionation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To reconstruct variability of the West African monsoon and associated vegetation changes on precessional and millennial time scales, we analyzed a marine sediment core from the continental slope off Senegal spanning the past 44,000 years (44 ka). We used the stable hydrogen isotopic composition (dD) of individual terrestrial plant wax n-alkanes as a proxy for past rainfall variability. The abundance and stable carbon isotopic composition (d13C) of the same compounds were analyzed to assess changes in vegetation composition (C3/C4 plants) and density. The dD record reveals two wet periods that coincide with local maximum summer insolation from 38 to 28 ka and 15 to 4 ka and that are separated by a less wet period during minimum summer insolation. Our data indicate that rainfall intensity during the rainy season throughout both wet humid periods was similar, whereas the length of the rainy season was presumably shorter during the last glacial than during the Holocene. Additional dry intervals are identified that coincide with North Atlantic Heinrich stadials and the Younger Dryas interval, indicating that the West African monsoon over tropical northwest Africa is linked to both insolation forcing and high-latitude climate variability. The d13C record indicates that vegetation of the western Sahel was consistently dominated by C4 plants during the past 44 ka, whereas C3-type vegetation increased during the Holocene. Moreover, we observe a gradual ending of the Holocene humid period together with unchanging ratio of C3 to C4 plants, indicating that an abrupt aridification due to vegetation feedbacks is not a general characteristic of this time interval.