998 resultados para spectral space
Resumo:
Soil science has sought to develop better techniques for the classification of soils, one of which is the use of remote sensing applications. The use of ground sensors to obtain soil spectral data has enabled the characterization of these data and the advancement of techniques for the quantification of soil attributes. In order to do this, the creation of a soil spectral library is necessary. A spectral library should be representative of the variability of the soils in a region. The objective of this study was to create a spectral library of distinct soils from several agricultural regions of Brazil. Spectral data were collected (using a Fieldspec sensor, 350-2,500 nm) for the horizons of 223 soil profiles from the regions of Matão, Paraguaçu Paulista, Andradina, Ipaussu, Mirandópolis, Piracicaba, São Carlos, Araraquara, Guararapes, Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante, Três Lagoas (MS); Goianésia (GO); and Uberaba and Lagoa da Prata (MG). A Principal Component Analysis (PCA) of the data was then performed and a graphic representation of the spectral curve was created for each profile. The reflectance intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic matter and the presence of opaque minerals. There was no change in the spectral curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarênicos. Argissolos had superficial horizon curves with the greatest intensity of reflection above 2,200 nm. Cambissolos and Neossolos Litólicos had curves with greater reflectance intensity in poorly developed horizons. Gleisols showed a convex curve in the region of 350-400 nm. The PCA was able to separate different data collection areas according to the region of source material. Principal component one (PC1) was correlated with the intensity of reflectance samples and PC2 with the slope between the visible and infrared samples. The use of the Spectral Library as an indicator of possible soil classes proved to be an important tool in profile classification.
Resumo:
Generally, medicine books are concentrated almost exclusively in explaining methodology that analyzes fixed measures, measures done in a certain moment, nevertheless the evolution of the measurement and correct interpretation of the missed values are very important and sometimes can give the key information of the results obtained. Thus, the analysis of the temporary series and spectral analysis or analysis of the time series in the dominion of frequencies can be regarded as an appropriate tool for this kind of studies.In this work the frequency of the pulsating secretion of luteinizing hormone LH (thatregulates the fertile life of women) were analyzed in order to determine the existence of the significant frequencies obtained by analysis of Fourier. Detection of the frequencies, with which the pulsating secretion of the LH takes place, is a quite difficult question due topresence of the random errors in measures and samplings, i.e. that pulsating secretions of small amplitude are not detected and disregarded. In physiology it is accepted that cyclical patterns in the secretion of the LH exist and in the results of this research confirm this pattern and determine its frequency presented in the corresponded periodograms to each of studied cycle. The obtained results can be used as key pattern for future sampling frequencies in order to ¿catch¿ the significant picks of the luteinizing hormone and reflect on time forproductivity treatment of women.
Resumo:
The Gross-Neveu model in an S^1 space is analyzed by means of a variational technique: the Gaussian effective potential. By making the proper connection with previous exact results at finite temperature, we show that this technique is able to describe the phase transition occurring in this model. We also make some remarks about the appropriate treatment of Grassmann variables in variational approaches.
Resumo:
Abstract Empirical testing of candidate vaccines has led to the successful development of a number of lifesaving vaccines. The advent of new tools to manipulate antigens and new methods and vectors for vaccine delivery has led to a veritable explosion of potential vaccine designs. As a result, selection of candidate vaccines suitable for large-scale efficacy testing has become more challenging. This is especially true for diseases such as dengue, HIV, and tuberculosis where there is no validated animal model or correlate of immune protection. Establishing guidelines for the selection of vaccine candidates for advanced testing has become a necessity. A number of factors could be considered in making these decisions, including, for example, safety in animal and human studies, immune profile, protection in animal studies, production processes with product quality and stability, availability of resources, and estimated cost of goods. The "immune space template" proposed here provides a standardized approach by which the quality, level, and durability of immune responses elicited in early human trials by a candidate vaccine can be described. The immune response profile will demonstrate if and how the candidate is unique relative to other candidates, especially those that have preceded it into efficacy testing and, thus, what new information concerning potential immune correlates could be learned from an efficacy trial. A thorough characterization of immune responses should also provide insight into a developer's rationale for the vaccine's proposed mechanism of action. HIV vaccine researchers plan to include this general approach in up-selecting candidates for the next large efficacy trial. This "immune space" approach may also be applicable to other vaccine development endeavors where correlates of vaccine-induced immune protection remain unknown.
Resumo:
We study the properties of (K) over bar* mesons in nuclear matter using a unitary approach in coupled channels within the framework of the local hidden gauge formalism and incorporating the (K) over bar pi decay channel in matter. The in-medium (K) over bar *N interaction accounts for Pauli blocking effects and incorporates the (K) over bar* self-energy in a self-consistent manner. We also obtain the (K) over bar* (off-shell) spectral function and analyze its behavior at finite density and momentum. At a normal nuclear matter density, the (K) over bar* meson feels a moderately attractive potential, while the (K) over bar* width becomes five times larger than in free space. We estimate the transparency ratio of the gamma A -> K+K*(-) A` reaction, which we propose as a feasible scenario at the present facilities to detect changes in the properties of the (K) over bar* meson in nuclear medium.
Resumo:
We explore the phase diagram of a two-component ultracold atomic Fermi gas interacting with zero-range forces in the limit of weak coupling. We focus on the dependence of the pairing gap and the free energy on the variations in the number densities of the two species while the total density of the system is held fixed. As the density asymmetry is increased, the system exhibits a transition from a homogenous Bardeen-Cooper-Schrieffer (BCS) phase to phases with spontaneously broken global space symmetries. One such realization is the deformed Fermi surface superfluidity (DFS) which exploits the possibility of deforming the Fermi surfaces of the species into ellipsoidal form at zero total momentum of Cooper pairs. The critical asymmetries at which the transition from DFS to the unpaired state occurs are larger than those for the BCS phase. In this precritical region the DFS phase lowers the pairing energy of the asymmetric BCS state. We compare quantitatively the DFS phase to another realization of superconducting phases with broken translational symmetry: the single-plane-wave Larkin-Ovchinnikov-Fulde-Ferrell phase, which is characterized by a nonvanishing center-of-mass momentum of the Cooper pairs. The possibility of the detection of the DFS phase in the time-of-flight experiments is discussed and quantified for the case of 6Li atoms trapped in two different hyperfine states.
Resumo:
We present computational approaches as alternatives to a recent microwave cavity experiment by S. Sridhar and A. Kudrolli [Phys. Rev. Lett. 72, 2175 (1994)] on isospectral cavities built from triangles. A straightforward proof of isospectrality is given, based on the mode-matching method. Our results show that the experiment is accurate to 0.3% for the first 25 states. The level statistics resemble those of a Gaussian orthogonal ensemble when the integrable part of the spectrum is removed.
Resumo:
Through an imaginary change of coordinates, the ordinary Poincar algebra is shown to be a subalgebra of the Galilei one in four space dimensions. Through a subsequent contraction the remaining Lie generators are eliminated in a natural way. An application of these results to connect Galilean and relativistic field equations is discussed.