960 resultados para spatial memory
Resumo:
Within-building spatial variability of indoor air quality may influence substantially the reliability of human exposure assessments based on single point samples, but have hitherto been little studied. To investigate and understand the within-building spatial variation of air pollutants, field measurements were conducted in a 7 level office building in Brisbane, Australia. The building consists of 3 sections (A side, Meddler and B side).
Resumo:
Smart Card data from Automated Fare Collection system has been considered as a promising source of information for transit planning. However, literature has been limited to mining travel patterns from transit users and suggesting the potential of using this information. This paper proposes a method for mining spatial regular origins-destinations and temporal habitual travelling time from transit users. These travel regularity are discussed as being useful for transit planning. After reconstructing the travel itineraries, three levels of Density-Based Spatial Clustering of Application with Noise (DBSCAN) have been utilised to retrieve travel regularity of each of each frequent transit users. Analyses of passenger classifications and personal travel time variability estimation are performed as the examples of using travel regularity in transit planning. The methodology introduced in this paper is of interest for transit authorities in planning and managements
Resumo:
Literacy Theories for the Digital Age insightfully brings together six essential approaches to literacy research and educational practice. The book provides powerful and accessible theories for readers, including Socio-cultural, Critical, Multimodal, Socio-spatial, Socio-material and Sensory Literacies. The brand new Sensory Literacies approach is an original and visionary contribution to the field, coupled with a provocative foreword from leading sensory anthropologist David Howes. This dynamic collection explores a legacy of literacy research while showing the relationships between each paradigm, highlighting their complementarity and distinctions. This highly relevant compendium will inspire readers to explore new frontiers of thought and practice in times of diversity and technological change.
Resumo:
It is only in recent years that the critical role that spatial data can play in disaster management and strengthening community resilience has been recognised. The recognition of this importance is singularly evident from the fact that in Australia spatial data is considered as soft infrastructure. In the aftermath of every disaster this importance is being increasingly strengthened with state agencies paying greater attention to ensuring the availability of accurate spatial data based on the lessons learnt. For example, the major flooding in Queensland during the summer of 2011 resulted in a comprehensive review of responsibilities and accountability for the provision of spatial information during such natural disasters. A high level commission of enquiry completed a comprehensive investigation of the 2011 Brisbane flood inundation event and made specific recommendations concerning the collection of and accessibility to spatial information for disaster management and for strengthening community resilience during and after a natural disaster. The lessons learnt and processes implemented were subsequently tested by natural disasters during subsequent years. This paper provides an overview of the practical implementation of the recommendations of the commission of enquiry. It focuses particularly on the measures adopted by the state agencies with the primary role for managing spatial data and the evolution of this role in Queensland State, Australia. The paper concludes with a review of the development of the role and the increasing importance of spatial data as an infrastructure for disaster planning and management which promotes the strengthening of community resilience.
Resumo:
This thesis aims to expand our understanding of imagining in the spatial design disciplines of architecture and interior design. More than three decades after Lawson’s statement, the matter of “what goes on in a designer’s head”, or imagining and mental problem solving remains just as mysterious and just as pertinent, possibly more so given the social and environmental challenges facing humankind. The lines on a page, the small perspective sketches, the connection of lines and scrawled notes and other clues help us understand what may be going on in the mind of the architect or designer. However, how designers know that space intimately before it is built is not greatly understood and articulated – even by designers themselves. There is a gap in the market in terms of informed exploration of the thinking that occurs during the design process, and how this is translated into physical outcomes. In other words, what do we see in our mind’s eye during the design process? This thesis explores design thinking and design process; what we ‘see’ when we draw, what we ‘see’ when we design.
Resumo:
In biology, we frequently observe different species existing within the same environment. For example, there are many cell types in a tumour, or different animal species may occupy a given habitat. In modelling interactions between such species, we often make use of the mean field approximation, whereby spatial correlations between the locations of individuals are neglected. Whilst this approximation holds in certain situations, this is not always the case, and care must be taken to ensure the mean field approximation is only used in appropriate settings. In circumstances where the mean field approximation is unsuitable we need to include information on the spatial distributions of individuals, which is not a simple task. In this paper we provide a method that overcomes many of the failures of the mean field approximation for an on-lattice volume-excluding birth-death-movement process with multiple species. We explicitly take into account spatial information on the distribution of individuals by including partial differential equation descriptions of lattice site occupancy correlations. We demonstrate how to derive these equations for the multi-species case, and show results specific to a two-species problem. We compare averaged discrete results to both the mean field approximation and our improved method which incorporates spatial correlations. We note that the mean field approximation fails dramatically in some cases, predicting very different behaviour from that seen upon averaging multiple realisations of the discrete system. In contrast, our improved method provides excellent agreement with the averaged discrete behaviour in all cases, thus providing a more reliable modelling framework. Furthermore, our method is tractable as the resulting partial differential equations can be solved efficiently using standard numerical techniques.
Resumo:
Do different brains forming a specific memory allocate the same groups of neurons to encode it? One way to test this question is to map neurons encoding the same memory and quantitatively compare their locations across individual brains. In a previous study, we used this strategy to uncover a common topography of neurons in the dorsolateral amygdala (LAd) that expressed a learning-induced and plasticity-related kinase (p42/44 mitogen-activated protein kinase; pMAPK), following auditory Pavlovian fear conditioning. In this series of experiments, we extend our initial findings to ask to what extent this functional topography depends upon intrinsic neuronal structure. We first showed that the majority (87 %) of pMAPK expression in the lateral amygdala was restricted to principal-type neurons. Next, we verified a neuroanatomical reference point for amygdala alignment using in vivo magnetic resonance imaging and in vitro morphometrics. We then determined that the topography of neurons encoding auditory fear conditioning was not exclusively governed by principal neuron cytoarchitecture. These data suggest that functional patterning of neurons undergoing plasticity in the amygdala following Pavlovian fear conditioning is specific to memory formation itself. Further, the spatial allocation of activated neurons in the LAd was specific to cued (auditory), but not contextual, fear conditioning. Spatial analyses conducted at another coronal plane revealed another spatial map unique to fear conditioning, providing additional evidence that the functional topography of fear memory storing cells in the LAd is non-random and stable. Overall, these data provide evidence for a spatial organizing principle governing the functional allocation of fear memory in the amygdala.
Resumo:
Pavlovian fear conditioning is a robust technique for examining behavioral and cellular components of fear learning and memory. In fear conditioning, the subject learns to associate a previously neutral stimulus with an inherently noxious co-stimulus. The learned association is reflected in the subjects' behavior upon subsequent re-exposure to the previously neutral stimulus or the training environment. Using fear conditioning, investigators can obtain a large amount of data that describe multiple aspects of learning and memory. In a single test, researchers can evaluate functional integrity in fear circuitry, which is both well characterized and highly conserved across species. Additionally, the availability of sensitive and reliable automated scoring software makes fear conditioning amenable to high-throughput experimentation in the rodent model; thus, this model of learning and memory is particularly useful for pharmacological and toxicological screening. Due to the conserved nature of fear circuitry across species, data from Pavlovian fear conditioning are highly translatable to human models. We describe equipment and techniques needed to perform and analyze conditioned fear data. We provide two examples of fear conditioning experiments, one in rats and one in mice, and the types of data that can be collected in a single experiment. © 2012 Springer Science+Business Media, LLC.
Resumo:
Pavlovian fear conditioning, also known as classical fear conditioning is an important model in the study of the neurobiology of normal and pathological fear. Progress in the neurobiology of Pavlovian fear also enhances our understanding of disorders such as posttraumatic stress disorder (PTSD) and with developing effective treatment strategies. Here we describe how Pavlovian fear conditioning is a key tool for understanding both the neurobiology of fear and the mechanisms underlying variations in fear memory strength observed across different phenotypes. First we discuss how Pavlovian fear models aspects of PTSD. Second, we describe the neural circuits of Pavlovian fear and the molecular mechanisms within these circuits that regulate fear memory. Finally, we show how fear memory strength is heritable; and describe genes which are specifically linked to both changes in Pavlovian fear behavior and to its underlying neural circuitry. These emerging data begin to define the essential genes, cells and circuits that contribute to normal and pathological fear.
Resumo:
Understanding the physical encoding of a memory (the engram) is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram. © 2011 This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
Resumo:
This thesis is a study of how the contents of volatile memory on the Windows operating system can be better understood and utilised for the purposes of digital forensic investigations. It proposes several techniques to improve the analysis of memory, with a focus on improving the detection of unknown code such as malware. These contributions allow the creation of a more complete reconstruction of the state of a computer at acquisition time, including whether or not the computer has been infected by malicious code.
Resumo:
Background Commercially available instrumented treadmill systems that provide continuous measures of temporospatial gait parameters have recently become available for clinical gait analysis. This study evaluated the level of agreement between temporospatial gait parameters derived from a new instrumented treadmill, which incorporated a capacitance-based pressure array, with those measured by a conventional instrumented walkway (criterion standard). Methods Temporospatial gait parameters were estimated from 39 healthy adults while walking over an instrumented walkway (GAITRite®) and instrumented treadmill system (Zebris) at matched speed. Differences in temporospatial parameters derived from the two systems were evaluated using repeated measures ANOVA models. Pearson-product-moment correlations were used to investigate relationships between variables measured by each system. Agreement was assessed by calculating the bias and 95% limits of agreement. Results All temporospatial parameters measured via the instrumented walkway were significantly different from those obtained from the instrumented treadmill (P < .01). Temporospatial parameters derived from the two systems were highly correlated (r, 0.79–0.95). The 95% limits of agreement for temporal parameters were typically less than ±2% of gait cycle duration. However, 95% limits of agreement for spatial measures were as much as ±5 cm. Conclusions Differences in temporospatial parameters between systems were small but statistically significant and of similar magnitude to changes reported between shod and unshod gait in healthy young adults. Temporospatial parameters derived from an instrumented treadmill, therefore, are not representative of those obtained from an instrumented walkway and should not be interpreted with reference to literature on overground walking.
Resumo:
Background The expansion of cell colonies is driven by a delicate balance of several mechanisms including cell motility, cell-to-cell adhesion and cell proliferation. New approaches that can be used to independently identify and quantify the role of each mechanism will help us understand how each mechanism contributes to the expansion process. Standard mathematical modelling approaches to describe such cell colony expansion typically neglect cell-to-cell adhesion, despite the fact that cell-to-cell adhesion is thought to play an important role. Results We use a combined experimental and mathematical modelling approach to determine the cell diffusivity, D, cell-to-cell adhesion strength, q, and cell proliferation rate, ?, in an expanding colony of MM127 melanoma cells. Using a circular barrier assay, we extract several types of experimental data and use a mathematical model to independently estimate D, q and ?. In our first set of experiments, we suppress cell proliferation and analyse three different types of data to estimate D and q. We find that standard types of data, such as the area enclosed by the leading edge of the expanding colony and more detailed cell density profiles throughout the expanding colony, does not provide sufficient information to uniquely identify D and q. We find that additional data relating to the degree of cell-to-cell clustering is required to provide independent estimates of q, and in turn D. In our second set of experiments, where proliferation is not suppressed, we use data describing temporal changes in cell density to determine the cell proliferation rate. In summary, we find that our experiments are best described using the range D = 161 - 243 ?m2 hour-1, q = 0.3 - 0.5 (low to moderate strength) and ? = 0.0305 - 0.0398 hour-1, and with these parameters we can accurately predict the temporal variations in the spatial extent and cell density profile throughout the expanding melanoma cell colony. Conclusions Our systematic approach to identify the cell diffusivity, cell-to-cell adhesion strength and cell proliferation rate highlights the importance of integrating multiple types of data to accurately quantify the factors influencing the spatial expansion of melanoma cell colonies.
Resumo:
Discretization of a geographical region is quite common in spatial analysis. There have been few studies into the impact of different geographical scales on the outcome of spatial models for different spatial patterns. This study aims to investigate the impact of spatial scales and spatial smoothing on the outcomes of modelling spatial point-based data. Given a spatial point-based dataset (such as occurrence of a disease), we study the geographical variation of residual disease risk using regular grid cells. The individual disease risk is modelled using a logistic model with the inclusion of spatially unstructured and/or spatially structured random effects. Three spatial smoothness priors for the spatially structured component are employed in modelling, namely an intrinsic Gaussian Markov random field, a second-order random walk on a lattice, and a Gaussian field with Matern correlation function. We investigate how changes in grid cell size affect model outcomes under different spatial structures and different smoothness priors for the spatial component. A realistic example (the Humberside data) is analyzed and a simulation study is described. Bayesian computation is carried out using an integrated nested Laplace approximation. The results suggest that the performance and predictive capacity of the spatial models improve as the grid cell size decreases for certain spatial structures. It also appears that different spatial smoothness priors should be applied for different patterns of point data.