916 resultados para solution and solubility
Resumo:
Changes in texture, microstructure, colour and protein solubility of Thai indigenous and broiler chicken Pectoralis muscle stripes cooked at different temperatures were evaluated. The change in shear value of both chicken muscles was a significant increase from 50 to 80 degrees C but no change from 80 to 100 degrees C. A significant decrease in fibre diameter was obtained in samples heated to an internal temperature of 60 degrees C and the greatest shrinkage of sarcomeres was observed with internal temperatures of 70-100 and 80-100 C for broiler and indigenous chicken muscles, respectively (P < 0.05). Cooking losses of indigenous chicken muscles increased markedly in the temperature range 80-100 C and were significantly higher than those of the broiler (P < 0.001). With increasing temperature, from 50 to 70 degrees C, cooked chicken muscle became lighter and yellower. Relationships between changes in sarcomere length, fibre diameter, shear value, cooking loss and solubility of muscle proteins were evaluated. It was found that the solubility of muscle protein was very highly correlated with the texture of cooked broiler muscle while sarcomere length changes and collagen solubility were important factors influencing the cooking loss and texture of cooked indigenous chicken muscle. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Annatto dyes are widely used in food and are finding increasing interest also for their application in the pharmaceutical and cosmetics industry. Bixin is the main pigment extracted from annatto seeds and accounts for 80% of the carotenoids in the outer coat of the seeds; norbixin being the water-soluble form of the bixin. Typically annatto dyes are extracted from the seeds by mechanical means or solutions of alkali, edible oil or organic solvents, or a combination of the two depending on the desired final product. In this work CGAs are investigated as an alternative separation method for the recovery of norbixin from a raw extraction solution of annatto pigments in KOH. A volume of CGAs generated from a cationic surfactant (CTAB) solution is mixed with a volume of annatto solution and when the mixture is allowed to settle it separates into the top aphron phase and the bottom liquid phase. Potassium norbixinate presented in the annatto solution will interact with the surfactant in the aphron phase, which results in the effective separation of norbixin. Recovery= 94% was achieved at a CTAB to norbixin molar ratio of 3.3. In addition a mechanism of separation is proposed here based on the separation results with the cationic surfactant and an anionic surfactant (bis-2-ethyl hexyl sulfosuccinate, AOT) and measurements of surfactant to norbixin ratio in the aphron phase; electrostatic interactions between the surfactant and norbixin molecules result in the fort-nation of a coloured complex and effective separation of norbixin. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer.
Influence of drought-induced acidification on the mobility of dissolved organic carbon in peat soils
Resumo:
A strong relationship between dissolved organic carbon (DOC) and sulphate (SO42−) dynamics under drought conditions has been revealed from analysis of a 10-year time series (1993–2002). Soil solution from a blanket peat at 10 cm depth and stream water were collected at biweekly and weekly intervals, respectively, by the Environmental Change Network at Moor House-Upper Teesdale National Nature Reserve in the North Pennine uplands of Britain. DOC concentrations in soil solution and stream water were closely coupled, displaying a strong seasonal cycle with lowest concentrations in early spring and highest in late summer/early autumn. Soil solution DOC correlated strongly with seasonal variations in soil temperature at the same depth 4-weeks prior to sampling. Deviation from this relationship was seen, however, in years with significant water table drawdown (>−25 cm), such that DOC concentrations were up to 60% lower than expected. Periods of drought also resulted in the release of SO42−, because of the oxidation of inorganic/organic sulphur stored in the peat, which was accompanied by a decrease in pH and increase in ionic strength. As both pH and ionic strength are known to control the solubility of DOC, inclusion of a function to account for DOC suppression because of drought-induced acidification accounted for more of the variability of DOC in soil solution (R2=0.81) than temperature alone (R2=0.58). This statistical model of peat soil solution DOC at 10 cm depth was extended to reproduce 74% of the variation in stream DOC over this period. Analysis of annual budgets showed that the soil was the main source of SO42− during droughts, while atmospheric deposition was the main source in other years. Mass balance calculations also showed that most of the DOC originated from the peat. The DOC flux was also lower in the drought years of 1994 and 1995, reflecting low DOC concentrations in soil and stream water. The analysis presented in this paper suggests that lower concentrations of DOC in both soil and stream waters during drought years can be explained in terms of drought-induced acidification. As future climate change scenarios suggest an increase in the magnitude and frequency of drought events, these results imply potential for a related increase in DOC suppression by episodic acidification.
Resumo:
The self-assembly of peptide YYKLVFFC based on a fragment of the amyloid beta (A) peptide, A beta 16-20, KLVFF has been studied in aqueous solution. The peptide is designed with multiple functional residues to examine the interplay between aromatic interactions and charge on the self-assembly, as well as specific transformations such as the pH-induced phenol-phenolate transition of the tyrosine residue. Circular dichroism (CD) and Fourier-transform infrared (FTIR) spectroscopies are used to investigate the conditions for beta-sheet self-assembly and the role of aromatic interactions in the CD spectrum as a function of pH and concentration. The formation of well-defined fibrils at pH 4.7 is confirmed by cryo-TEM (transmission electron microscope) and negative stain TEM. The morphology changes at higher pH, and aggregates of short twisted fibrils are observed at pH 11. Polarized optical microscopy shows birefringence at a low concentration (1 wt.-%) of YYKLVFFC in aqueous solution, and small-angle X-ray scattering was used to probe nematic phase formation in more detail. A pH-induced transition from nematic to isotropic phases is observed on increasing pH that appears to be correlated to a reduction in aggregate anisotropy upon increasing pH.
Resumo:
The self-assembly of a fragment of the amyloid beta peptide that has been shown to be critical in amyloid fibrillization has been studied in aqueous solution. There are conflicting reports in the literature on the fibrillization of A beta (16-20), i.e., KLVFF, and our results shed light on this. In dilute solution, self-assembly of NH2-KLVFF-COOH is strongly influenced by aromatic interactions between phenylalanine units, as revealed by UV spectroscopy and circular dichroism. Fourier transform infrared (FTIR) spectroscopy reveals beta-sheet features in spectra taken for more concentrated solutions and also dried films. X-ray diffraction and cryo-transmission electron microscopy (cryo-TEM) provide further support for beta-sheet amyloid fibril formation. A comparison of cryo-TEM images with those from conventional dried and negatively stained TEM specimens highlights the pronounced effects of sample preparation on the morphology. A comparison of FTIR data for samples in solution and dried samples also highlights the strong effect of drying on the self-assembled structure. In more concentrated phosphate-buffered saline (PBS) solution, gelation of NH2-KLVFF-COOH is observed. This is believed to be caused by screening of the electrostatic charge on the peptide, which enables beta sheets to aggregate into a fibrillar gel network. The rheology of the hydrogel is probed, and the structure is investigated by light scattering and small-angle X-ray scattering.
Resumo:
Two new complex salts of the form (Bu4N)(2)[Ni(L)(2)] (1) and (Ph4P)(2)[Ni(L)(2)] (2) and four heteroleptic complexes cis-M(PPh3)(2)(L) [M = Ni(II) (3), Pd(II) (4), L = 4-CH3OC6H4SO2N=CS2] and cis-M(PPh3)(2)(L') [M = Pd(II) (5), Pt(II) (6), L' = C6H5SO2N=CS2] were prepared and characterized by elemental analyses, IR, H-1, C-13 and P-31 NMR and UV-Vis spectra, solution and solid phase conductivity measurements and X-ray crystallography. A minor product trans-Pd(PPh3)(2)(SH)(2), 4a was also obtained with the synthesis of 4. The NiS4 and MP2S2 core in the complex salts and heteroleptic complexes are in the distorted square-plane whereas in the trans complex, 4a the centrosymmetric PdS2P2 core is perforce square planar. X-ray crystallography revealed the proximity of the ortho phenyl proton of the PPh3 ligand to Pd(II) showing rare intramolecular C-H center dot center dot center dot Pd anagostic binding interactions in the palladium cis-5 and trans-4a complexes. The complex salts with sigma(rt) values similar to 10 (5) S cm (1) show semi-conductor behaviors. The palladium and platinum complexes show photoluminescence properties in solution at room temperature.
Resumo:
Four new Cu(II)-azido complexes of formula [CuL(N-3)] (1), [CuL(N-3)](2) (2), [Cu7L2(N-3)(12)](n) (3), and [Cu2L(dmen)-(N-3)(3)](n) (4) (dmen = N,N-dimethylethylenediamine) have been synthesized using the same tridentate Schiff base ligand HL (2-[1-(2-dimethylaminoethylimino)ethyl]phenol, the condensation product of dmen and 2-hydroxyacetophenone). The four compounds have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. Complex 1 is mononuclear, whereas 2 is a single mu-1,1 azido-bridged dinuclear compound. The polymeric compound 3 possesses a 2D structure in which the Cu(II) ions are linked by phenoxo oxygen atoms and two different azide bridges (mu-1,1 and mu-1,1,3). The structure of complex 4 is a double helix in which two mu-1,3-azido-bridged alternating one-dimensional helical chains of CuL(N-3) and Cu(dmen)(N-3)(2) are joined together by weak mu-1,1 azido bridges and H-bonds. The complexes interconvert in solution and can be obtained in pure form by carefully controlling the conditions. The magnetic properties of compounds 1 and 2 show the presence of very weak antiferromagnetic exchange interactions mediated by a ligand pi overlap (J = -1.77) and by an asymmetric 1,1-N-3 bridge (J = -1.97 cm(-1)), respectively. Compound 3 presents, from the magnetic point of view, a decorated chain structure with both ferro- and antiferromagnetic interactions. Compound 4 is an alternating helicoidal chain with two weak antiferromagnetic exchange interactions (J -1.35 and -2.64 cm(-1)).
Resumo:
The rigid [6]ferrocenophane, L-1, was synthesised by condensation of 1,1'-ferrocene dicarbaldehyde with trans-1,2-diaminocyclohexane in high dilution at r.t. followed by reduction. When other experimental conditions were employed, the [6,6,6]ferrocenephane (L-2) was also obtained. Both compounds were characterised by single crystal X-ray crystallography. The protonation of L-1 and its metal complexation were evaluated by the effect on the electron-transfer process of the ferrocene (fc) unit of L-1 using cyclic voltammetry (CV) and square wave voltammetry (SWV) in anhydrous CH3CN solution and in 0.1 M (Bu4NPF6)-Bu-n as the supporting electrolyte. The electrochemical process of L-1 between 300 and 900 mV is complicated by amine oxidation. On the other hand, an anodic shift from the fc/fc(+) wave of L-1 of 249, 225, 81 and 61 mV was observed by formation of Zn2+, Ni2+, Pd2+ and Cu2+ complexes, respectively. Whereas Mg2+ and Ca2+ only have with L-1 weak interactions and they promote the acid-base equilibrium of L-1. This reveals that L-1 is an interesting molecular redox sensor for detection of Zn2+ and Ni2+, although the kinetics of the Zn2+ complex formation is much faster than that of the Ni2+ one. The X-ray crystal structure of [(PdLCl2)-Cl-1] was determined and showed a square-planar environment with Pd(II) and Fe(II) centres separated by 3.781(1) angstrom. The experimental anodic shifts were elucidated by DFT calculations on the [(MLCl2)-Cl-1] series and they are related to the nature of the HOMO of these complexes and a four-electron, two-orbital interaction.
Resumo:
The self-assembly in solution of puroindoline-a (Pin-a), an amphiphilic lipid binding protein from common wheat, was investigated by small angle neutron scattering, dynamic light scattering and size exclusion chromatography. Pin-a was found to form monodisperse prolate ellipsoidal micelles with a major axial radius of 112 +/- 4.5 A ˚ and minor axial radius of 40.4 +/- 0.18 A ˚ . These protein micelles were formed by the spontaneous self-assembly of 38 Pin-a molecules in solution and were stable over a wide pH range (3.5–11) and at elevated temperatures (20–65 degC). Pin-a micelles could be disrupted upon addition of the non-ionic surfactant dodecyl-b-maltoside, suggesting that the protein self-assembly is driven by hydrophobic forces, consisting of intermolecular interactions between Trp residues located within a well-defined Trp-rich domain of Pin-a.
Resumo:
Purpose – The purpose of this paper is to present the findings and lessons learned from three case studies conducted for facilities located in California, North America. The findings aim to focus on energy and maintenance management practices and the interdependent link between energy and maintenance. Design/methodology/approach – The research is based on a positivist epistemological philosophical approach informed by action research. The research cycle was completed for each case study. A case study report was provided to each facility management team to foster collaboration with the researcher and to document case study process and results. Findings – Composite findings of the case studies include: there is an interdependent link between energy and maintenance management; reactive maintenance and energy management methods are commonly used; and more proactively operated and managed buildings require the interdependent link between energy maintenance management to be better understood. Research limitations/implications – The three case studies were located in California. Although the case study results can be generalized, determination of how to generalize and apply the results to commercial buildings outside of the USA is beyond the scope of this paper. Practical implications – Detailed discussion of the needs of the three facility management teams are discussed by identifying a current challenge, developing a solution and documenting lessons learned using the research cycle. Originality/value – The paper seeks to demonstrate the interdependencies of energy and maintenance management, two topics which are often researched interdependently. Additionally, the paper provides insight about maintenance management, a topic often cited as being under researched.
Resumo:
The influence of substituents and media polarity on the photoinducedE→Z geometrical isomerisation of the stilbene, azobenzene and N-benzylideneaniline chromophores has been compared and assessed. The efficiency of the process in all three systems is markedly dependent on the presence and characteristics of electron-donor and electron-acceptor substituents at the 4- and 4′-positions. The results are discussed in terms of relaxation of the E-excited singlet state. In the absence of a nitro substituent, relaxation to the S1 orthogonal state competes effectively with non-productive intramolecular electron transfer; in the presence of a nitro substituent, the T1 orthogonal state is formed from inter-system crossing. For systems with a 4-nitro and a 4′-electron-donor substituent, access to the triplet state is inhibited by polar solvents promoting formation of the inactive charge-transfer state from the S1 state, and no isomerisation is observed. Similar effects are observed in both solution and polymer films. Such variations in behaviour have important implications for the utilisation of the chromophores in nonlinear optical phenomena including photorefractivity.
Resumo:
A diphenoxido-bridged dinuclear copper(II) complex, [Cu2L2(ClO4)(2)] (1), has been synthesized using a tridentate reduced Schiff base ligand, 2-[[2-(diethylamino)-ethylamino]methyl]phenol (HL). The addition of triethylamine to the methanolic solution of this complex produced a novel triple bridged (double phenoxido and single hydroxido) dinuclear copper(II) complex, [Cu2L2(OH)]ClO4 (2). Both complexes 1 and 2 were characterized by X-ray structural analyses, variable-temperature magnetic susceptibility measurements, and spectroscopic methods. In 1, the two phenoxido bridges are equatorial-equatorial and the species shows strong antiferromagnetic coupling with J = -615.6(6.1) cm(-1). The inclusion of the equatorial-equatorial hydroxido bridge in 2 changes the Cu center dot center dot center dot Cu distance from 3.018 angstrom (avg.) to 2.798 angstrom (avg.), the positions of the phenoxido bridges to axial-equatorial, and the magnetic coupling to ferromagnetic with J = 50.1(1.4) cm(-1). Using 3,5-di-tert-butylcatechol as the substrate, the catecholase activity of the complexes has been studied in a methanol solution; compound 2 shows higher catecholase activity (k(cat) = 233.4 h(-1)) than compound 1 (k(cat) = 93.6 h(-1)). Both complexes generate identical species in solution, and they are interconvertible simply by changing the pH of their solutions. The higher catecholase activity of 2 seems to be due to the presence of the OH group, which increases the pH of its solution.
Resumo:
Two pentaaza macrocycles containing pyridine in the backbone, namely 3,6,9,12,18-pentaazabicyclo[12.3.1] octadeca-1(18),14,16-triene ([15]pyN(5)), and 3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19),15,17-triene ([16]pyN(5)), were synthesized in good yields. The acid-base behaviour of these compounds was studied by potentiometry at 298.2 K in aqueous solution and ionic strength 0.10 M in KNO3. The protonation sequence of [15]pyN(5) was investigated by H-1 NMR titration that also allowed the determination of protonation constants in D2O. Binding studies of the two ligands with Ca2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ metal ions were performed under the same experimental conditions. The results showed that all the complexes formed with the 15-membered ligand, particularly those of Cu2+ and especially Ni2+, are thermodynamically more stable than with the larger macrocycle. Cyclic voltammetric data showed that the copper(II) complexes of the two macrocycles exhibited analogous behaviour, with a single quasi-reversible one-electron transfer reduction process assigned to the Cu(II)/Cu(I) couple. The UV-visible-near IR spectroscopic and magnetic moment data of the nickel(II) complexes in solution indicated a tetragonal distorted coordination geometry for the metal centre. X-band EPR spectra of the copper(II) complexes are consistent with distorted square pyramidal geometries. The crystal structure of [Cu([15]pyN(5))](2+) determined by X-ray diffraction showed the copper(II) centre coordinated to all five macrocyclic nitrogen donors in a distorted square pyramidal environment.
Resumo:
Lanthanide(III) complexes with N-donor ex-tractants, which exhibit the potential for the separation of minor actinides from lanthanides in the management of spent nuclear fuel, have been directly synthesized and characterized in both solution and solid states. Crystal structures of the Pr3+, Eu3+, Tb3+, and Yb3+ complexes of 6,6′-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin3-yl)-1,10-phenanthroline(CyMe4-BTPhen) and the Pr3+, Eu3+, and Tb3+ complexes of 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotria-zin-3-yl)-2,2′-bypyridine (CyMe4-BTBP) were obtained. The majority of these structures displayed coordination of two ofthe tetra-N-donor ligands to each Ln3+ ion, even when in some cases the complexations were performed with equimolar amounts of lanthanide and N-donor ligand. The structures showed that generally the lighter lanthanides had their coordination spheres completed by a bidentate nitrate ion, giving a 2+ charged complex cation, whereas the structures of the heavier lanthanides displayed tricationic complex species with a single water molecule completing their coordination environments. Electronic absorption spectroscopic titrations showed formation of the 1:2 Ln3+/LN4‑donor species (Ln = Pr3+, Eu3+, Tb3+) in methanol when the N-donor ligand was in excess. When the Ln3+ ion was in excess, evidence for formation of a 1:1 Ln3+/LN4‑donor complex species was observed. Luminescent lifetime studies of mixtures of Eu3+ with excess CyMe4-BTBP and CyMe4-BTPhen in methanol indicated that the nitrate-coordinated species is dominant in solution. X-ray absorption spectra of Eu3+ and Tb3+ species, formed by extraction from an acidic aqueous phase into an organic solution consisting of excess N-donor extractant in pure cyclohexanone or 30% tri-n-butyl phosphate (TBP) in cyclohexanone, were obtained. The presence of TBP in the organic phase did not alter lanthanide speciation. Extended X-ray absorption fine structure data from these spectra were fitted using chemical models established by crystallography and solution spectroscopy and showed the dominant lanthanide species in the bulk organic phase was a 1:2 Ln3+/LN‑donor species.