998 resultados para sliding modes
Resumo:
The system presented here is based on neurophysiological and electrophysiological data. It computes three types of increasingly integrated temporal and probability contexts, in a bottom-up mode. To each of these contexts corresponds an increasingly specific top-down priming effect on lower processing stages, mostly pattern recognition and discrimination. Contextual learning of time intervals, events' temporal order or sequential dependencies and events' prior probability results from the delivery of large stimuli sequences. This learning gives rise to emergent properties which closely match the experimental data.
Resumo:
The strongly enhanced and localized optical fields that occur within the gaps between metallic nanostructures can be leveraged for a wide range of functionality in nanophotonic and optical metamaterial applications. Here, we introduce a means of precise control over these nanoscale gaps through the application of a molecular spacer layer that is self-assembled onto a gold film, upon which gold nanoparticles (NPs) are deposited electrostatically. Simulations using a three-dimensional finite element model and measurements from single NPs confirm that the gaps formed by this process, between the NP and the gold film, are highly reproducible transducers of surface-enhanced resonant Raman scattering. With a spacer layer of roughly 1.6 nm, all NPs exhibit a strong Raman signal that decays rapidly as the spacer layer is increased.
Resumo:
We present a precise theoretical explanation and prediction of certain resonant peaks and dips in the electromagnetic transmission coefficient of periodically structured slabs in the presence of nonrobust guided slab modes. We also derive the leading asymptotic behavior of the related phenomenon of resonant enhancement near the guided mode. The theory applies to structures in which losses are negligible and to very general geometries of the unit cell. It is based on boundary-integral representations of the electromagnetic fields. These depend on the frequency and on the Bloch wave vector and provide a complex-analytic connection in these parameters between generalized scattering states and guided slab modes. The perturbation of three coincident zeros-those of the dispersion relation for slab modes, the reflection constant, and the transmission constant-is central to calculating transmission anomalies both for lossless dielectric materials and for perfect metals.
Resumo:
Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between genotype and complex phenotypes. In order to identify quantitative trait loci (QTLs) that influence the binding of a transcription factor in humans, we measured binding of the multifunctional transcription and chromatin factor CTCF in 51 HapMap cell lines. We identified thousands of QTLs in which genotype differences were associated with differences in CTCF binding strength, hundreds of them confirmed by directly observable allele-specific binding bias. The majority of QTLs were either within 1 kb of the CTCF binding motif, or in linkage disequilibrium with a variant within 1 kb of the motif. On the X chromosome we observed three classes of binding sites: a minority class bound only to the active copy of the X chromosome, the majority class bound to both the active and inactive X, and a small set of female-specific CTCF sites associated with two non-coding RNA genes. In sum, our data reveal extensive genetic effects on CTCF binding, both direct and indirect, and identify a diversity of patterns of CTCF binding on the X chromosome.
Resumo:
The impacts of various climate modes on the Red Sea surface heat exchange are investigated using the MERRA reanalysis and the OAFlux satellite reanalysis datasets. Seasonality in the atmospheric forcing is also explored. Mode impacts peak during boreal winter [December–February (DJF)] with average anomalies of 12–18 W m−2 to be found in the northern Red Sea. The North Atlantic Oscillation (NAO), the east Atlantic–west Russia (EAWR) pattern, and the Indian monsoon index (IMI) exhibit the strongest influence on the air–sea heat exchange during the winter. In this season, the largest negative anomalies of about −30 W m−2 are associated with the EAWR pattern over the central part of the Red Sea. In other seasons, mode-related anomalies are considerably lower, especially during spring when the mode impacts are negligible. The mode impacts are strongest over the northern half of the Red Sea during winter and autumn. In summer, the southern half of the basin is strongly influenced by the multivariate ENSO index (MEI). The winter mode–related anomalies are determined mostly by the latent heat flux component, while in summer the shortwave flux is also important. The influence of the modes on the Red Sea is found to be generally weaker than on the neighboring Mediterranean basin.
Resumo:
Hydrogen bonding in clusters and extended layers of squaric acid molecules has been investigated by density functional computations. Equilibrium geometries, harmonic vibrational frequencies, and energy barriers for proton transfer along hydrogen bonds have been determined using the Car-Parrinello method. The results provide crucial parameters for a first principles modeling of the potential energy surface, and highlight the role of collective modes in the low-energy proton dynamics. The importance of quantum effects in condensed squaric acid systems has been investigated, and shown to be negligible for the lowest-energy collective proton modes. This information provides a quantitative basis for improved atomistic models of the order-disorder and displacive transitions undergone by squaric acid crystals as a function of temperature and pressure. (C) 2001 American Institute of Physics.