993 resultados para silt
Resumo:
Soviet sedimentologists use the term "coarse silt" to denote the size fraction 0.1 to 0.05 mm (50-100 µm). Petelin (1961) has shown that this fraction is most diagnostic for terrigeneous and volcanogenic mineral assemblages and provinces in Recent deep-sea sediments, because of its greatest variability of both heavy and light non-opaque minerals, which may be easily identified by the common immersion method. We believe that the fraction is suitable for mineralogical study of unconsolidated and friable sediments from DSDP cores as well, if the objective is to investigate their source area and transporation tracks. In the case of fine-grained oceanic sediments, mineral composition of the coarse silt does not differ markedly from that of the "coarse fraction" (>62 µm).
Resumo:
The redox stratification of bottom sediments in Kandalaksha Bay, White Sea, is characterized by elevated concentrations of Mn (3-5%) and Fe (7.5%) in the uppermost layer, which is two orders of magnitude and one and a half times, respectively, higher than the average concentrations of these elements in the Earth's crust. The high concentrations of organic matter (Corg = 1-2%) in these sediments cannot maintain (because of its low reaction activity) the sulfate-reducing process (the concentration of sulfide Fe is no higher than 0.6%). The clearest manifestation of diagenesis is the extremely high Mn2+ concentration in the silt water (>500 µM), which causes its flux into the bottom water, oxidation in contact with oxygen, and the synthesis of MnO2 oxy-hydroxide enriching the surface layer of the sediments. Such migrations are much less typical of Fe. Upon oxygen exhaustion in the uppermost layer of the sediments, the synthesized oxyhydroxides (MnO2 and FeOOH) serve as oxidizers of organic matter during anaerobic diagenesis. The calculated diffusion-driven Mn flux from the sediments (280 µM/m**2 day) and corresponding amount of forming Mn oxyhydrate as compared to opposite oxygen flux to sediments (1-10 mM/m**2 day) indicates that >10% organic matter in the surface layer of the sediments can be oxidized with the participation of MnO2. The roles of other oxidizers of organic matter (FeOOH and SO4**2-) becomes discernible at deeper levels of the sediments. The detailed calculation of the balance of reducing processes testifies to the higher consumption of organic matter during the diagenesis of surface sediments than it follows from the direct determination of Corg. The most active diagenetic redox processes terminate at depths of 25-50 cm. Layers enriched in Mn at deeper levels are metastable relicts of its surface accumulation and are prone to gradual dissemination.