909 resultados para senior chemistry
Resumo:
This work reports a state-of-the-art theoretical characterization of four new sulfur-bromine species and five transition states on the [H, S(2), Br] potential energy surface. Our highest level theoretical approach employed the method coupled cluster singles and doubles with perturbative contributions of connected triples, CCSD(T), along with the series of correlation-consistent basis sets and with extrapolation to the complete basis set (CBS) limit in the optimization of the geometrical parameters and to quantify the energetic quantities. The structural and vibrational frequencies here reported are unique and represent the most accurate investigation to date of these species. The global minimum corresponds to a skewed structure HSSBr with a disulfide bond; this is followed by a pyramidal-like structure, SSHBr, 18.85 kcal/mol above the minimum. Much higher in energy, we found another skewed structure, HSBrS (50.29 kcal/mol), with one S-Br dative-type bond, and another pyramidal-like one, HBrSS (109.80 kcal/mol), with two S-Br dative-type bonds. The interconversion of HSSBr into SSHBr can occur via a transfer of either the hydrogen or the bromine atom but involves a very high barrier of about 43 kcal/mol. These molecules are potentially a new route of coupling the sulfur and bromine chemistry in the atmosphere, and conditions of high concentration of H(2)S like in volcanic eruptions might contribute to their formation. We note that HSSBr can act as a reservoir molecule for the reaction between the radicals HSS and Br. Also, an assessment of the methods DFT/B3LYP/CBS and MP2/CBS relative to CCSD(T)/CBS provides insights on the expected performance of these methods on the characterization of polysulfides and also of more complex systems containing disulfide bridges.
Resumo:
Julie Millard, The Dr. Gerald and Myra Dorros Professor of Chemistry and her son, Zoli Nagy, reading A Series of Unfortunate Events: The Ersatz Elevator by Lemony Snicket
Resumo:
The photolytic phenanthrene-based precursors for both β-methoxycarbene and β-ethoxycarbene were synthesized with and without a deuterium label attached to the a carbon. The incorporation of this deuterium label allowed distinction between a 1, 2-H shift and a 1, 2-O shift pathway to the respective alkyl vinyl ether, without the influence of a primary kinetic isotope effect. Photolyses of these precursors gave rearrangement products of the expected β-alkoxycarbenes. In the case of β-methoxycarbene, no methyl vinyl ether was observed due to its volatility. However, the appearance of aldehyde peaks in the NMR spectra, from an apparent further rearrangement to acetaldehyde through an enol intermediate, indicated that a 1,2-H shift had occurred. Ethyl vinyl ether was isolated following the photolysis of the β-ethoxycarbene precursor. Quantification of the two pathways showed less than 2% undergoing an ethoxy shift to the ethyl vinyl ether. Yield experiments on this photolysis demonstrated a maximum yield of β-ethoxycarbene as 43%, though this decreased as the experiment continued. Computational work on the β-ethoxycarbene system indicates that the triplet scate is more stable than the singlet. In addition, the activation energy to the 1.2-H shift pathway is remarkably low and is clearly consistent with the observed overwhelming preference for this pathway in the experiment.
Resumo:
The aim of this project is to provide an explanation for recently obtained binding constants for two similar guest molecules, NDMG and N-MAP, with a p-sulfonatocalix[6]arene host in ammonium acetate buffer. This work was done primarily using pressure perturbation calorimetry, which is a technique that determines the coefficient of thermal expansion, α, which is in turn related to the solute molecule's effect on the order of the surrounding water molecules. A series of experiments were designed to test the effects of suspected confounding variables on the validity of PPC data. PPC was then used to study NDMG and N-MAP in ammonium acetate buffer. NDMG exhibited a minimum in α as function of temperature, while N-MAP did not. This difference was theorized to be due to the formation of an intramolecular hydrogen bond in monocationic NDMG that would lower the heat capacity of the molecule and better distribute the molecule's charge. Computational work and nuclear magnetic resonance spectroscopy confirmed that monocationic, ring-closed NDMG has less concentrated charge and more constrained motion than monocationic, ring-open NDMG. This evidence supports the theory that monocationic NDMG forms an intramolecular hydrogen bond and that this may be responsible for the minimum in α. This difference may explain the differences in binding constants between NDMG and N-MAP.
Resumo:
The 4.5S RNA molecule of Escherichia coli is essential to cell viability. It has been shown that depletion of this molecule inhibits protein synthesis, induces the heat shock response, and generally slows cell growth. The molecule has also been implicated in protein secretion, as in cells depleted of 4.5S RNA, an unsecreted precursor to ?-lactamase accumulates (pre-?-lactamase). A role in protein secretion is further supported by structural similarities with the 7S RNA molecule of eukaryotic SRP, specific binding to SRP54, and its homolog in E. coli, P48, and the ability of 7S RNA from certain archaebacteria to suppress 4.5S RNA depletion. In this study I have utilized strains with mutant forms of the 4.5S RNA genes in order to study the effect of altered 4.5S RNA on cell physiology. These strains have their mutant 4.55 RNA under the control of the tryptophan synthetic operon. Decreased growth rates, inhibited cell division, and altered protein synthesis all result from these mutations.
Resumo:
The ability of macroheterocyclic compounds to complex with ionic species has led to the synthesis and investigation of many multidentate macroheterocyclic species. The most stable complexes are formed between macrocyclic polyetheral ligands (crown ethers) with alkali or alkaline earth metal iona. There is an excellent correlation of the stability of these complexes with the size of the cation and the site of the cavity in the macrocyclic ligand. Additional factors, such as the basicity of the ligand and the solvating ability of the solvent, also play important roles in the stabilization of the complex. The stability of such complexes has been advantageously used to increase anionic reactivity and has been successfully applied to several organic fluorinations, oxidations, and similar reactions. The use of macrocyclic ligands in inorganic syntheses of otherwise difficult to obtain fluoro compounds has not been reported. O-carborane and m-carborane, C2BlOHl2, are icosahedral cage systems derived from Bl2H122- by replacement of BH with the isoelectronic CH group. These stable molecules exhibit electron-deficient bonding which can best be explained by delocalization of electrons. This delocalization gives rise to stability similar to that found in aromatic hydrocarbons. Crown ether activated potassium fluoride has been successfully employed in the conversion of alkyl, acyl and aryl halides to their respective fluorides. Analogously halide substituted carboranes were prepared, but their fluoro-derivatives were not obtained. The application of crown ethers in the synthesis of transition metal complexes is relatively unexplored. The usual synthesis of fluoro-derivative transition metal complexes involves highly reactive and toxic fluorinating agents such as antimony trifluoride, antimony penta fluoride. bromine trifluoride and hydrogen fluoride, An attempted preparation of the hexafluoroosmate (IV) ion via a crown activated, or naked fluoride~was unsuccessful. Potassium hexafluoroosmate (IV), K208F6. was eventually prepared using bromine trifluoride as a fluorinating and oxidizing agent .
Resumo:
There are many viruses that are able to infect the alimentary tract of man. Little is known, however, about the mechanism of infection itself or the pathophysiology of the gut during infection. 'The research reported here is concerned with the differences in susceptibility among suckling mice of various ages inoculated by the intraperitoneal and intragastric routes. Since the normal mode of entry of many viruses to the gut is via the oral route, Coxsackievirus B5, a human enterovirus which does attack this way, was utilized. It is a non-tumor producing RNA virus that has been shown to act similarly in the mouse and human. The virus was pooled in HeLa cell cultures and titered by a plaquing assay in the same cell cultures. CD-l mice, 10, 14, 18, and 22 days old , were infected either orally or intraperitoneally with 5.0 x 10^10 (10 day old animals) and 1.0 x10^9 plaque forming units per animal. Dissections were done at 1 and 3 days post infection with samples of the blood, heart, liver, and gut being taken from each animal. Each sample was titered individually and the data presented as an average of six samples. As a result of previous work, it is known that the gut of a newborn mouse isn't able to decrease the concentration of the infecting dose and therefore provides no defense against an enteric infection with Coxsackievirus B5. In contrat, mature mice are able to reduce the amount of viral dissemination across the gut as well as inhibit replication after absorption has occurred. The results of this study indicate that there is a double barrier system developing in suckling mice that is involved with and directly related to the gastrointestinal tract The first part of this defense is the inhibition of penetration of virus across the gut when the primary site of' infection is the intestinal mucosa. This mechanism develops sometime around 20 to 22 days after birth. At about 16-18 days of age, suckling mice that were challenged intragastrically are able to stop active replication and initiate clearance of virus from the systemic circulation. There are many factors that might contribute to the marked decrease in susceptibility with age of suckling mice. Some of these or possibly a combination of these factors might explain the defense mechanisms described above, but to date, the chemistry or mechanical functioning of the gastrointestinal barrier to enteric viral infection is unknown.
Resumo:
The mechanism of chloroperoxidase (CPO)-catalyzed peroxidatic reactions of several substituted hydroquinones was studied at various hydrogen peroxide concentrations. The pathway was studied using cytochrome c as the radical trapping agent. As the hydroquinones became more hindered there was a difference in the amount of radicals trapped. For hydroquinone, 59.3% radical pathway, and methylhydroquinone, 81.4% radical, the difference in radicals trapped is due to a difference in pathway. For 2,3-dimethylhydroquinone (75.4%), trimethylhydroquinone (44.5%), and t-butylhydroquinone (0%) other non-peroxidatic reactions are noticed. Thus, for the more substituted hydroquinones the difference in radicals trapped can not be assigned to a difference in radical pathway. Also, there were problems drawing conclusions for this system due to the catalytic reaction of hydrogen peroxide. The radical trapping ability of 2,4,6-trimethylphenol was investigated for various other substrates. TMP reacted with the radicals generated in the enzymatic reactions of phenol, resorcinol, and m-methoxyphenol. Thus, this TMP system offers further potential as another radical trapping agent for use in these studies.
Resumo:
Mercury contamination of food products results from contact with soil, water, and air polluted with mercury from industrial sources, as well as from the use of mercury-containing pesticides and fungicides on plants. A method was developed for extracting mercury from tobacco products. The mercury content of various tobacco products was determined, using an atomic absorption spectrophotometer.
Resumo:
Reverse side of the student senior show at Woods - Gerry.
Resumo:
Objetiva-se aqui desenvolver uma longa série de textos para discussão com prioridade para trabalhos dos alunos de minhas disciplinas em Filosofia Econômica que em si já se constitui numa realização deste programa de pesquisa. Além de exercício e estímulo para os alunos atuais, pois a participação é voluntária, a série deverá servir como fonte de exemplares para atrair e orientar novos alunos. Tem-se nela uma extensão da literatura sobre o tema, mas na forma de circulação restrita. Buscar assim a critica de colegas e de todos que possam dar alguma contribuição também nos motiva determinantemente. Os textos deverão ser submetidos para apresentação em congressos e publicação em revistas acadêmicas, podendo a série eventualmente levar-nos à organização de livros.
Resumo:
The commitments and working requirements of abstract, applied, and art of, economics are assessed within an analogy with the fields of inert matter and life. Abstract economics is the pure logic of the phenomenon. Applied positive economics presupposes many distinct abstract sciences. Art presupposes applied economics and direct knowledge of the specificities which characterize the time-space individuality of the phenomenon. This is an indetermination clearly formulated by Senior and Mill; its connection with institutionalism is discussed. The Ricardian Vice is the habit of ignoring the indetermination; its prevalence in mainstream economics is exemplified, and its causes analyzed.