929 resultados para scientific computation
Resumo:
Structure from motion often refers to the computation of 3D structure from a matched sequence of images. However, a depth map of a surface is difficult to compute and may not be a good representation for storage and recognition. Given matched images, I will first show that the sign of the normal curvature in a given direction at a given point in the image can be computed from a simple difference of slopes of line-segments in one image. Using this result, local surface patches can be classified as convex, concave, parabolic (cylindrical), hyperbolic (saddle point) or planar. At the same time the translational component of the optical flow is obtained, from which the focus of expansion can be computed.
Resumo:
Scientists are faced with a dilemma: either they can write abstract programs that express their understanding of a problem, but which do not execute efficiently; or they can write programs that computers can execute efficiently, but which are difficult to write and difficult to understand. We have developed a compiler that uses partial evaluation and scheduling techniques to provide a solution to this dilemma.
Resumo:
A vernier offset is detected at once among straight lines, and reaction times are almost independent of the number of simultaneously presented stimuli (distractors), indicating parallel processing of vernier offsets. Reaction times for identifying a vernier offset to one side among verniers offset to the opposite side increase with the number of distractors, indicating serial processing. Even deviations below a photoreceptor diameter can be detected at once. The visual system thus attains positional accuracy below the photoreceptor diameter simultaneously at different positions. I conclude that deviation from straightness, or change of orientation, is detected in parallel over the visual field. Discontinuities or gradients in orientation may represent an elementary feature of vision.
Resumo:
We describe the key role played by partial evaluation in the Supercomputer Toolkit, a parallel computing system for scientific applications that effectively exploits the vast amount of parallelism exposed by partial evaluation. The Supercomputer Toolkit parallel processor and its associated partial evaluation-based compiler have been used extensively by scientists at M.I.T., and have made possible recent results in astrophysics showing that the motion of the planets in our solar system is chaotically unstable.
Resumo:
Evolutionary algorithms are a common tool in engineering and in the study of natural evolution. Here we take their use in a new direction by showing how they can be made to implement a universal computer. We consider populations of individuals with genes whose values are the variables of interest. By allowing them to interact with one another in a specified environment with limited resources, we demonstrate the ability to construct any arbitrary logic circuit. We explore models based on the limits of small and large populations, and show examples of such a system in action, implementing a simple logic circuit.
Resumo:
Most computational models of neurons assume that their electrical characteristics are of paramount importance. However, all long-term changes in synaptic efficacy, as well as many short-term effects, are mediated by chemical mechanisms. This technical report explores the interaction between electrical and chemical mechanisms in neural learning and development. Two neural systems that exemplify this interaction are described and modelled. The first is the mechanisms underlying habituation, sensitization, and associative learning in the gill withdrawal reflex circuit in Aplysia, a marine snail. The second is the formation of retinotopic projections in the early visual pathway during embryonic development.
Resumo:
We constructed a parallelizing compiler that utilizes partial evaluation to achieve efficient parallel object code from very high-level data independent source programs. On several important scientific applications, the compiler attains parallel performance equivalent to or better than the best observed results from the manual restructuring of code. This is the first attempt to capitalize on partial evaluation's ability to expose low-level parallelism. New static scheduling techniques are used to utilize the fine-grained parallelism of the computations. The compiler maps the computation graph resulting from partial evaluation onto the Supercomputer Toolkit, an eight VLIW processor parallel computer.
Resumo:
My work is broadly concerned with the question "How can designs bessynthesized computationally?" The project deals primarily with mechanical devices and focuses on pre-parametric design: design at the level of detail of a blackboard sketch rather than at the level of detail of an engineering drawing. I explore the project ideas in the domain of single-input single-output dynamic systems, like pressure gauges, accelerometers, and pneumatic cylinders. The problem solution consists of two steps: 1) generate a schematic description of the device in terms of idealized functional elements, and then 2) from the schematic description generate a physical description.
Resumo:
Rowland, J.J. (2003) Model Selection Methodology in Supervised Learning with Evolutionary Computation. BioSystems 72, 1-2, pp 187-196, Nov
Resumo:
Rowland, J. J. (2003) Generalisation and Model Selection in Supervised Learning with Evolutionary Computation. European Workshop on Evolutionary Computation in Bioinformatics: EvoBio 2003. Lecture Notes in Computer Science (Springer), Vol 2611, pp 119-130
Resumo:
Rowland, J.J. (2002) Interpreting Analytical Spectra with Evolutionary Computation. In: Fogel, G.B. and Corne, D.W. (eds), Evolutionary Computation in Bioinformatics. Morgan Kaufmann, San Francisco, pp 341--365, ISBN 1-55860-797-8
Resumo:
J. Keppens, Q. Shen and B. Schafer. Probabilistic abductive computation of evidence collection strategies in crime investigation. Proceedings of the 10th International Conference on Artificial Intelligence and Law, pages 215-225.
Resumo:
M. Galea and Q. Shen. Fuzzy rules from ant-inspired computation. Proceedings of the 13th International Conference on Fuzzy Systems, pages 1691-1696, 2004.
Resumo:
Formal tools like finite-state model checkers have proven useful in verifying the correctness of systems of bounded size and for hardening single system components against arbitrary inputs. However, conventional applications of these techniques are not well suited to characterizing emergent behaviors of large compositions of processes. In this paper, we present a methodology by which arbitrarily large compositions of components can, if sufficient conditions are proven concerning properties of small compositions, be modeled and completely verified by performing formal verifications upon only a finite set of compositions. The sufficient conditions take the form of reductions, which are claims that particular sequences of components will be causally indistinguishable from other shorter sequences of components. We show how this methodology can be applied to a variety of network protocol applications, including two features of the HTTP protocol, a simple active networking applet, and a proposed web cache consistency algorithm. We also doing discuss its applicability to framing protocol design goals and to representing systems which employ non-model-checking verification methodologies. Finally, we briefly discuss how we hope to broaden this methodology to more general topological compositions of network applications.
Resumo:
Attributing a dollar value to a keyword is an essential part of running any profitable search engine advertising campaign. When an advertiser has complete control over the interaction with and monetization of each user arriving on a given keyword, the value of that term can be accurately tracked. However, in many instances, the advertiser may monetize arrivals indirectly through one or more third parties. In such cases, it is typical for the third party to provide only coarse-grained reporting: rather than report each monetization event, users are aggregated into larger channels and the third party reports aggregate information such as total daily revenue for each channel. Examples of third parties that use channels include Amazon and Google AdSense. In such scenarios, the number of channels is generally much smaller than the number of keywords whose value per click (VPC) we wish to learn. However, the advertiser has flexibility as to how to assign keywords to channels over time. We introduce the channelization problem: how do we adaptively assign keywords to channels over the course of multiple days to quickly obtain accurate VPC estimates of all keywords? We relate this problem to classical results in weighing design, devise new adaptive algorithms for this problem, and quantify the performance of these algorithms experimentally. Our results demonstrate that adaptive weighing designs that exploit statistics of term frequency, variability in VPCs across keywords, and flexible channel assignments over time provide the best estimators of keyword VPCs.