861 resultados para scenario clustering
Resumo:
Prevotella nigrescens, Prevotella intermedia and Porphyromonas gingivalis are oral pathogens from the family Bacteroidaceae, regularly isolated from cases of gingivitis and periodontitis. In this study, the phylogenetic variability of these three bacterial species was investigated by means of 16S rRNA (rrs) gene sequence comparisons of a set of epidemiologically and geographically diverse isolates. For each of the three species, the rrs gene sequences of 11 clinical isolates as well as the corresponding type strains was determined. Comparison of all rrs sequences obtained with those of closely related species revealed a clear clustering of species, with only a little intraspecies variability but a clear difference in the rrs gene with respect to the next related taxon. The results indicate that the three species form stable, homogeneous genetic groups, which favours an rrs-based species identification of these oral pathogens. This is especially useful given the 7% sequence divergence between Prevotella intermedia and Prevotella nigrescens, since phenotypic distinction between the two Prevotella species is inconsistent or involves techniques not applicable in routine identification.
Resumo:
OBJECTIVES In dental research multiple site observations within patients or taken at various time intervals are commonplace. These clustered observations are not independent; statistical analysis should be amended accordingly. This study aimed to assess whether adjustment for clustering effects during statistical analysis was undertaken in five specialty dental journals. METHODS Thirty recent consecutive issues of Orthodontics (OJ), Periodontology (PJ), Endodontology (EJ), Maxillofacial (MJ) and Paediatric Dentristry (PDJ) journals were hand searched. Articles requiring adjustment accounting for clustering effects were identified and statistical techniques used were scrutinized. RESULTS Of 559 studies considered to have inherent clustering effects, adjustment for this was made in the statistical analysis in 223 (39.1%). Studies published in the Periodontology specialty accounted for clustering effects in the statistical analysis more often than articles published in other journals (OJ vs. PJ: OR=0.21, 95% CI: 0.12, 0.37, p<0.001; MJ vs. PJ: OR=0.02, 95% CI: 0.00, 0.07, p<0.001; PDJ vs. PJ: OR=0.14, 95% CI: 0.07, 0.28, p<0.001; EJ vs. PJ: OR=0.11, 95% CI: 0.06, 0.22, p<0.001). A positive correlation was found between increasing prevalence of clustering effects in individual specialty journals and correct statistical handling of clustering (r=0.89). CONCLUSIONS The majority of studies in 5 dental specialty journals (60.9%) examined failed to account for clustering effects in statistical analysis where indicated, raising the possibility of inappropriate decreases in p-values and the risk of inappropriate inferences.
Resumo:
Recently divergent species that can hybridize are ideal models for investigating the genetic exchanges that can occur while preserving the species boundaries. Petunia exserta is an endemic species from a very limited and specific area that grows exclusively in rocky shelters. These shaded spots are an inhospitable habitat for all other Petunia species, including the closely related and widely distributed species P. axillaris. Individuals with intermediate morphologic characteristics have been found near the rocky shelters and were believed to be putative hybrids between P. exserta and P. axillaris, suggesting a situation where Petunia exserta is losing its genetic identity. In the current study, we analyzed the plastid intergenic spacers trnS/trnG and trnH/psbA and six nuclear CAPS markers in a large sampling design of both species to understand the evolutionary process occurring in this biological system. Bayesian clustering methods, cpDNA haplotype networks, genetic diversity statistics, and coalescence-based analyses support a scenario where hybridization occurs while two genetic clusters corresponding to two species are maintained. Our results reinforce the importance of coupling differentially inherited markers with an extensive geographic sample to assess the evolutionary dynamics of recently diverged species that can hybridize. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND: HCV coinfection remains a major cause of morbidity and mortality among HIV-infected individuals and its incidence has increased dramatically in HIV-infected men who have sex with men(MSM). METHODS: Hepatitis C virus (HCV) coinfection in the Swiss HIV Cohort Study(SHCS) was studied by combining clinical data with HIV-1 pol-sequences from the SHCS Drug Resistance Database(DRDB). We inferred maximum-likelihood phylogenetic trees, determined Swiss HIV-transmission pairs as monophyletic patient pairs, and then considered the distribution of HCV on those pairs. RESULTS: Among the 9748 patients in the SHCS-DRDB with known HCV status, 2768(28%) were HCV-positive. Focusing on subtype B(7644 patients), we identified 1555 potential HIV-1 transmission pairs. There, we found that, even after controlling for transmission group, calendar year, age and sex, the odds for an HCV coinfection were increased by an odds ratio (OR) of 3.2 [95% confidence interval (CI) 2.2, 4.7) if a patient clustered with another HCV-positive case. This strong association persisted if transmission groups of intravenous drug users (IDUs), MSMs and heterosexuals (HETs) were considered separately(in all cases OR >2). Finally we found that HCV incidence was increased by a hazard ratio of 2.1 (1.1, 3.8) for individuals paired with an HCV-positive partner. CONCLUSIONS: Patients whose HIV virus is closely related to the HIV virus of HIV/HCV-coinfected patients have a higher risk for carrying or acquiring HCV themselves. This indicates the occurrence of domestic and sexual HCV transmission and allows the identification of patients with a high HCV-infection risk.
Resumo:
Against the background of a widely fragmented and diluted international environmental governance architecture, different reform options are currently being discussed. This issue brief considers whether streamlining international environmental regimes by grouping or ‘clustering’ international agreements could improve effectiveness and efficiency. It outlines the general idea of the clustering approach, draws lessons from the chemicals and waste cluster and examines the implications and potentials of clustering multilateral environmental agreements.
Resumo:
BACKGROUND The insertion element IS630 found in Aeromonas salmonicida belongs to the IS630-Tc1-mariner superfamily of transposons. It is present in multiple copies and represents approximately half of the IS present in the genome of A. salmonicida subsp. salmonicida A449. RESULTS By using High Copy Number IS630 Restriction Fragment Length Polymorphism (HCN-IS630-RFLP), strains of various subspecies of Aeromonas salmonicida showed conserved or clustering patterns, thus allowing their differentiation from each other. Fingerprints of A. salmonicida subsp. salmonicida showed the highest homogeneity while 'atypical' A. salmonicida strains were more heterogeneous. IS630 typing also differentiated A. salmonicida from other Aeromonas species. The copy number of IS630 in Aeromonas salmonicida ranges from 8 to 35 and is much lower in other Aeromonas species. CONCLUSIONS HCN-IS630-RFLP is a powerful tool for subtyping of A. salmonicida. The high stability of IS630 insertions in A. salmonicida subsp. salmonicida indicates that it might have played a role in pathoadaptation of A. salmonicida which has reached an optimal configuration in the highly virulent and specific fish pathogen A. salmonicida subsp. salmonicida.
Resumo:
Online reputation management deals with monitoring and influencing the online record of a person, an organization or a product. The Social Web offers increasingly simple ways to publish and disseminate personal or opinionated information, which can rapidly have a disastrous influence on the online reputation of some of the entities. This dissertation can be split into three parts: In the first part, possible fuzzy clustering applications for the Social Semantic Web are investigated. The second part explores promising Social Semantic Web elements for organizational applications,while in the third part the former two parts are brought together and a fuzzy online reputation analysis framework is introduced and evaluated. Theentire PhD thesis is based on literature reviews as well as on argumentative-deductive analyses.The possible applications of Social Semantic Web elements within organizations have been researched using a scenario and an additional case study together with two ancillary case studies—based on qualitative interviews. For the conception and implementation of the online reputation analysis application, a conceptual framework was developed. Employing test installations and prototyping, the essential parts of the framework have been implemented.By following a design sciences research approach, this PhD has created two artifacts: a frameworkand a prototype as proof of concept. Bothartifactshinge on twocoreelements: a (cluster analysis-based) translation of tags used in the Social Web to a computer-understandable fuzzy grassroots ontology for the Semantic Web, and a (Topic Maps-based) knowledge representation system, which facilitates a natural interaction with the fuzzy grassroots ontology. This is beneficial to the identification of unknown but essential Web data that could not be realized through conventional online reputation analysis. Theinherent structure of natural language supports humans not only in communication but also in the perception of the world. Fuzziness is a promising tool for transforming those human perceptions intocomputer artifacts. Through fuzzy grassroots ontologies, the Social Semantic Web becomes more naturally and thus can streamline online reputation management.
Resumo:
We consider the problem of fitting a union of subspaces to a collection of data points drawn from one or more subspaces and corrupted by noise and/or gross errors. We pose this problem as a non-convex optimization problem, where the goal is to decompose the corrupted data matrix as the sum of a clean and self-expressive dictionary plus a matrix of noise and/or gross errors. By self-expressive we mean a dictionary whose atoms can be expressed as linear combinations of themselves with low-rank coefficients. In the case of noisy data, our key contribution is to show that this non-convex matrix decomposition problem can be solved in closed form from the SVD of the noisy data matrix. The solution involves a novel polynomial thresholding operator on the singular values of the data matrix, which requires minimal shrinkage. For one subspace, a particular case of our framework leads to classical PCA, which requires no shrinkage. For multiple subspaces, the low-rank coefficients obtained by our framework can be used to construct a data affinity matrix from which the clustering of the data according to the subspaces can be obtained by spectral clustering. In the case of data corrupted by gross errors, we solve the problem using an alternating minimization approach, which combines our polynomial thresholding operator with the more traditional shrinkage-thresholding operator. Experiments on motion segmentation and face clustering show that our framework performs on par with state-of-the-art techniques at a reduced computational cost.
Resumo:
An integrated approach for multi-spectral segmentation of MR images is presented. This method is based on the fuzzy c-means (FCM) and includes bias field correction and contextual constraints over spatial intensity distribution and accounts for the non-spherical cluster's shape in the feature space. The bias field is modeled as a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of intensity are added into the FCM cost functions. To reduce the computational complexity, the contextual regularizations are separated from the clustering iterations. Since the feature space is not isotropic, distance measure adopted in Gustafson-Kessel (G-K) algorithm is used instead of the Euclidean distance, to account for the non-spherical shape of the clusters in the feature space. These algorithms are quantitatively evaluated on MR brain images using the similarity measures.
Resumo:
Competing water demands for household consumption as well as the production of food, energy, and other uses pose challenges for water supply and sustainable development in many parts of the world. Designing creative strategies and learning processes for sustainable water governance is thus of prime importance. While this need is uncontested, suitable approaches still have to be found. In this article we present and evaluate a conceptual approach to scenario building aimed at transdisciplinary learning for sustainable water governance. The approach combines normative, explorative, and participatory scenario elements. This combination allows for adequate consideration of stakeholders’ and scientists’ systems, target, and transformation knowledge. Application of the approach in the MontanAqua project in the Swiss Alps confirmed its high potential for co-producing new knowledge and establishing a meaningful and deliberative dialogue between all actors involved. The iterative and combined approach ensured that stakeholders’ knowledge was adequately captured, fed into scientific analysis, and brought back to stakeholders in several cycles, thereby facilitating learning and co-production of new knowledge relevant for both stakeholders and scientists. However, the approach also revealed a number of constraints, including the enormous flexibility required of stakeholders and scientists in order for them to truly engage in the co-production of new knowledge. Overall, the study showed that shifts from strategic to communicative action are possible in an environment of mutual trust. This ultimately depends on creating conditions of interaction that place scientists’ and stakeholders’ knowledge on an equal footing.
Resumo:
SUMMARY There is interest in the potential of companion animal surveillance to provide data to improve pet health and to provide early warning of environmental hazards to people. We implemented a companion animal surveillance system in Calgary, Alberta and the surrounding communities. Informatics technologies automatically extracted electronic medical records from participating veterinary practices and identified cases of enteric syndrome in the warehoused records. The data were analysed using time-series analyses and a retrospective space-time permutation scan statistic. We identified a seasonal pattern of reports of occurrences of enteric syndromes in companion animals and four statistically significant clusters of enteric syndrome cases. The cases within each cluster were examined and information about the animals involved (species, age, sex), their vaccination history, possible exposure or risk behaviour history, information about disease severity, and the aetiological diagnosis was collected. We then assessed whether the cases within the cluster were unusual and if they represented an animal or public health threat. There was often insufficient information recorded in the medical record to characterize the clusters by aetiology or exposures. Space-time analysis of companion animal enteric syndrome cases found evidence of clustering. Collection of more epidemiologically relevant data would enhance the utility of practice-based companion animal surveillance.