981 resultados para remaining phosphorus
Resumo:
A life table methodology was developed which estimates the expected remaining Army service time and the expected remaining Army sick time by years of service for the United States Army population. A measure of illness impact was defined as the ratio of expected remaining Army sick time to the expected remaining Army service time. The variances of the resulting estimators were developed on the basis of current data. The theory of partial and complete competing risks was considered for each type of decrement (death, administrative separation, and medical separation) and for the causes of sick time.^ The methodology was applied to world-wide U.S. Army data for calendar year 1978. A total of 669,493 enlisted personnel and 97,704 officers were reported on active duty as of 30 September 1978. During calendar year 1978, the Army Medical Department reported 114,647 inpatient discharges and 1,767,146 sick days. Although the methodology is completely general with respect to the definition of sick time, only sick time associated with an inpatient episode was considered in this study.^ Since the temporal measure was years of Army service, an age-adjusting process was applied to the life tables for comparative purposes. Analyses were conducted by rank (enlisted and officer), race and sex, and were based on the ratio of expected remaining Army sick time to expected remaining Army service time. Seventeen major diagnostic groups, classified by the Eighth Revision, International Classification of Diseases, Adapted for Use In The United States, were ranked according to their cumulative (across years of service) contribution to expected remaining sick time.^ The study results indicated that enlisted personnel tend to have more expected hospital-associated sick time relative to their expected Army service time than officers. Non-white officers generally have more expected sick time relative to their expected Army service time than white officers. This racial differential was not supported within the enlisted population. Females tend to have more expected sick time relative to their expected Army service time than males. This tendency remained after diagnostic groups 580-629 (Genitourinary System) and 630-678 (Pregnancy and Childbirth) were removed. Problems associated with the circulatory system, digestive system and musculoskeletal system were among the three leading causes of cumulative sick time across years of service. ^
Resumo:
Swine manure and fertilizer can be used to supply the nitrogen (N) and phosphorus (P) needs of crops. Excess P application sometimes applied with N-based manure for corn increases the risk of P loss and water quality impairment. Poor water quality in Iowa streams and lakes due to excess P has prompted questions about the impact of cropping and nutrient management systems on P loss from fields.
Resumo:
No-till minimizes the incorporation of crop residue and fertilizer with soil; resulting in wetter, colder soils and the accumulation of organic matter, phosphorus (P), and potassium (K) near the soil surface. Banding of P and Kcould be more effective than broadcast fertilization by counteracting stratification, applying nutrients in the root zone (starter effect), and minimizing reactions with the soil that may reduce their availability to plants. Therefore, a long-term study was established in 1994 to evaluate P and K fertilizer rates and placement methods for grain yield of corn and soybean managed with no-till and chiselplow/disk tillage.
Resumo:
No-till management for corn and soybean results in little or no incorporation of crop residues and fertilizer with soil. Subsurface banding phosphorus (P) and potassium (K) fertilizers with planter attachments could be more effective than broadcast fertilization, because in no-till with broadcast fertilizer, both nutrients accumulate at or near the soil surface. A long-term study was initiated in 1994 at the ISU Northwest Research Farm to evaluate P and K fertilizer placement for corn and soybean managed with no-till and chiselplow tillage.
Resumo:
No-till management limits the incorporation of crop residue and fertilizer with soil resulting in wetter, colder soils and the accumulation of organic matter, phosphorus (P), and potassium (K) near the soil surface. Banding of P and K could be more effective than broadcast fertilization by counteracting stratification, applying nutrients in the root zone (starter effect), and minimizing reactions with the soil that may reduce their availability to plants. Therefore, this long-term study was established in 1994 to evaluate P and K fertilizer placement methods and grain yield of corn-soybean rotations managed with notill and chisel-plow/disk tillage.
Resumo:
The relative effects of paleoceanographic and paleogeographic variations, sediment lithology, and diagenetic processes on the final preserved chemistry of Japan Sea sediments are evaluated by investigating the rare earth element (REE), major element, and trace element concentrations in 59 squeeze-cake whole-round and 27 physical-property sample residues from Sites 794, 795, and 797, cored during ODP Leg 127. The most important variation in sedimentary chemical composition is the increase in SiO2 concentration through the Pliocene diatomaceous sequences, which dilutes most other major and trace element components by various degrees. This biogenic input is largest at Site 794 (Yamato Basin), moderately developed at Site 797 (Yamato Basin), and of only minor importance at Site 795 (Japan Basin), potentially reflecting basinal contrasts in productivity with the Yamato Basin recording greater biogenic input than the Japan Basin and with the easternmost sequence of Site 794 lying beneath the most productive waters. There are few systematic changes in solid-phase chemistry resulting from the opal-A/opal-CT or opal-CT/quartz silica phase transformations. Most major and trace element concentrations are controlled by the aluminosilicate fraction of the sediment, although the effects of diagenetic silica phases and manganese carbonates are of localized importance. REE total abundances (Sum REE) in the Japan Sea are strongly dependent upon the paleoceanographic position of a given site with respect to terrigenous and biogenic sources. REE concentrations at Site 794 overall correspond well to aluminosilicate chemical indices and are strongly diluted by SiO2 within the upper Miocene-Pliocene diatomaceous sequence. Eu/Eu* values at Site 794 reach a maximum through the diatomaceous interval as well, most likely suggesting an association of Eu/Eu* with the siliceous component, or reflecting slight incorporation of a detrital feldspar phase. SumREE at Site 795 also is affiliated strongly with aluminosilicate phases and yet is diluted only slightly by siliceous input. At Site 797, SumREE is not as clearly associated with the aluminosilicate fraction, is correlated moderately to siliceous input, and may be sporadically influenced by detrital heavy minerals originating from the nearby rifted continental fragment composing the Yamato Rise. Ce/Ce* profiles at all three sites increase essentially monotonically with depth and record progressive diagenetic LREE fractionation. The observed Ce/Ce* increases are not responding to changes in the paleoceanographic oxygenation state of the overlying water, as there is no independent evidence to suggest the proper oceanographic conditions. Ce/Ce* correlates slightly better with depth than with age at the two Yamato Basin sites. The downhole increase in Ce/Ce* at Sites 794 and 797 is a passive response to the diagenetic transfer of LREE (except Ce) from sediment to interstitial water. At Site 795, the overall lack of correlation between Ce/Ce* and Lan/Ybn suggests that other processes mask the diagenetic behavior of all LREEs. First-order calculations of the Ce budget in Japan Sea waters and sediment indicate that ~20% of the excess Ce adsorbed by settling particles is recycled within the water column and that an additional ~38% is recycled at or near the seafloor. Thus, because the remaining excess Ce is only ~10% of the total Ce, there is not a large source of Ce to the deeply buried sediment, further suggesting that the downhole increase in Ce/Ce* is a passive response to diagenetic behavior of the other LREEs. The REE chemistry of Japan Sea sediment therefore predicts successive downhole addition of LREEs to deeply buried interstitial waters.
Resumo:
Vertical distribution of organic phosphorus and phosphatase activity was studied in the Southeast Pacific Ocean. The average rate of mineralization of organic phosphorus in the 0-200 m layer was shown to differ by a factor of 5-10 in oligotrophic and eutrophic areas, while residence time of phosphorus in production-destruction cycles differed by a factor of only 2-5, apparently because of both concentration of organic phosphorus and phosphorolysis rate increased simultaneously in the areas.
Resumo:
Concentrations of organic and mineral nitrogen and phosphorus in waters from different types of bays were determined during summer of 1987. Content of organic nitrogen in surface waters reached 80-97% of total; content of mineral phosphorus was 60-100%. Concentrations of N_org and P_org in deep waters decreased to 70 and 40%, respectively. Distribution of organic matter in the bays was controlled by river run-off.