882 resultados para reinforced


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inclusion of granular columns in soft clay deposits leads to improvements in bearing capacity and overall stiffness along with a reduction in consolidation settlement. Many laboratory investigations have focused on aspects of bearing capacity, but published data on settlement performance is limited. This paper reports on some interesting findings obtained from a laboratory model study in respect of these issues. In this investigation, 300 mm diameter by 400 mm long samples of soft kaolin clay were reinforced with single or multiple granular columns of various lengths using the displacement and replacement installation methods. The experimental findings revealed that, for the same area replacement ratio, limited settlement reduction was achieved for single long floating columns and end-bearing column groups. Marginal improvements in settlement performance were also achieved for columns installed by the displacement method. No settlement reduction was achieved for short single floating columns while short floating granular column groups produced increased settlements. These observations were verified using contact pressure measurements between the footing and column/surrounding clay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A softened strut-and-tie macro model able to reproduce the flexural behaviour of
external beam-column joint is presented. The model is specific for concrete with hooked steel fibres (FRC) and it is designed to calculate the flexural response, as load-deflection curve, of a beam-column sub-assemblages. The model considers the presence of a constant vertical load acting on the column and of a monotonically increasing lateral force applied at the tip of the beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to investigate drilling process in carbon-fiber reinforced plastic (CFRP) composites with multilayer TiAlN/TiN PVD-coated tungsten carbide drill. The effect of process parameters have been investigated in drilling of Hexcel M21-T700GC. Thrust force and torque were measured online throughout the drilling experiments. Delamination were observed using optical microscope and analyzed via a developed algorithm based on digital image processing technique. Surface roughness of each hole was measured using a surface profilometer. In addition, the progression of tool wear in various surfaces of drill was observed using tool microscope and measured using image software. Our results indicate that the thrust force and torque increased with the increasing cutting speed and feed rate. Delamination and average surface roughness that rose with the increase in feed rate, however, decreased with the increasing cutting speed. The average surface roughness tended to increase with the increase in feed rate and decrease with the increasing cutting speed in drilling of carbon-fiber reinforced plastic (CFRP). Feed rate was found as the predominant factor on the drilling outputs. Abrasive wear was observed on both flank and relief surfaces, which created edge wear on cutting edges. No sign of chipping or plastic deformation has been observed on the surfaces of drills. © 2012 The Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A robust finite element scheme for the micro-mechanical modeling of the behavior of fiber reinforced polymeric composites under external loads is developed. The developed model is used to simulate stress distribution throughout the composite domain and to identify the locations where maximum stress concentrations occur. This information is used as a guide to predict dominant failure and crack growth mechanisms in fiber reinforced composites. The differences between continuous fibers, which are susceptible to unidirectional transverse fracture, and short fibers have been demonstrated. To assess the validity and range of applicability of the developed scheme, numerical results obtained by the model are compared with the available experimental data and also with the values found using other methods reported in the literature. These comparisons show that the present finite element scheme can generate meaningful results in the analysis of fiber reinforced composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research we investigate the performance of drilling process in carbon fibre reinforced composite (CFC) material, titanium alloy and the hybrid stack of these two materials, using coated carbide drill bit. We study the effect of the process parameters such as the feed rate and speed on the induced forces and torques, also on the wear of drill and surface roughness of the holes. In the composite material the percentage of surface damage in both drilling CFC on its own and drilling in stack form is estimated. Also, the effect of worn drill on the surface damage is identified. In the titanium, the burr formation in stack and non-stack form is investigated. The wear of the drill results in increased forces and torques required for drilling. This increases the surface delaminations substantially at the entrance in drilling of CFC. However, the surface roughness of the holes reduces with the wear of the drill in CFC drilling. Also, the surface delamination and surface roughness of the holes in the CFC whilst drilled in hybrid form reduces significantly. This is despite the increase of the forces and torques required in drilling CFC in stack form. Copyright © 2012 Inderscience Enterprises Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the beneficial influence of compressive membrane action in fibre reinforced polymer (FRP)reinforced in-plane restrained slabs in bridge deck slabs and the improved service performance when archingaction occurs. Bridge deck slabs that are exposed to extreme environmental conditions can experience severecorrosion damage. Expansive corrosion in steel reinforcement significantly reduces the design life and durabilityof concrete structures; for example, on one short section of the M1 in Northern Ireland, nearly £1 million was spent last year on the maintenance and repair of bridges due to corrosion. Corrosion-resistant compositereinforcement such as basalt fibre reinforced polymer (BFRP) and glass fibre reinforced polymer (GFRP) provides adurable alternative to reinforcing steel. In this research, two BFRP reinforced slabs and two GFRP reinforced slabswere constructed using high-strength concrete with a target cube compressive strength of 65 N/mm2. The slabsrepresented typical full-scale dimensions of a real bridge deck slab 475 mm wide by 1425 mm long and 150 mmdeep. The service and ultimate behaviour of the slabs are discussed and the results are compared with the relevantdesign guidelines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of multiple layer fibre-reinforced mouldings is of growing interest to the rotational moulding industry because of their cost/performance ratio. The particular problem that arises when using reinforcements in this process relate to the fact that the process is low shear and good mixing of resin and reinforcement is not optimum under those conditions. There is also a problem of the larger/heavier reinforcing agents segregating out of the powder to lay up on the inner part surface. In this study, short glass fibres were incorporated and distributed into a polymer matrix to produce fibre-reinforced polymer composites using the rotational moulding process and characterised in terms of morphology and mechanical properties. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical behavior of microfibrilar composites (MFC), consisting of a matrix of high-density polyethylene (HDPE) and reinforcement of polyamide 6 (PA6) fibrils, with and without compatibilization, was studied. The composites were produced by conventional processing techniques with various shape and arrangement of the PA6 reinforcing entities: long, unidirectional, or crossed bundles of fibrils (UDP and CPC, respectively), middle-length, randomly oriented bristles (MRB), or non-oriented micrometric PA6 spheres (NOM). The tensile, flexural, and impact properties of the MFC materials (UDP, CPC, and MRB) were determined as a function of the PA6 reinforcement shape, alignment and content, and compared with those of NOM, the non-fibrous composite. It was concluded that the in-situ MFC materials based on HDPE/PA6 blends display improvements in the mechanical behavior when compared with the neat HDPE matrix, e.g., up to 33% for the Young modulus, up to 119% for the ultimate tensile strength, and up to 80% for the flexural stiffness. Copyright © 2011 Society of Plastics Engineers.