457 resultados para refuge cabinato rifugio
Resumo:
Woody debris is abundant in hurricane-impacted forests. With a major hurricane affecting South Florida mangroves approximately every 20 yr, carbon storage and nutrient retention may be influenced greatly by woody debris dynamics. In addition, woody debris can influence seedling regeneration in mangrove swamps by trapping propagules and enhancing seedling growth potential. Here, we report on line-intercept woody debris surveys conducted in mangrove wetlands of South Florida 9–10 yr after the passage of Hurricane Andrew. The total volume of woody debris for all sites combined was estimated at 67 m3/ha and varied from 13 to 181 m3/ha depending upon differences in forest height, proximity to the storm, and maximum estimated wind velocities. Large volumes of woody debris were found in the eyewall region of the hurricane, with a volume of 132 m3/ha and a projected woody debris biomass of approximately 36 t/ha. Approximately half of the woody debris biomass averaged across all sites was associated as small twigs and branches (fine woody debris), since coarse woody debris >7.5 cm felled during Hurricane Andrew was fairly well decomposed. Much of the small debris is likely to be associated with post-hurricane forest dynamics. Hurricanes are responsible for large amounts of damage to mangrove ecosystems, and components of associated downed wood may provide a relative index of disturbance for mangrove forests. Here, we suggest that a fine:coarse woody debris ratio ≤0.5 is suggestive of a recent disturbance in mangrove wetlands, although additional research is needed to corroborate such findings.
Resumo:
Calcareous floating periphyton mats in the southern Everglades provide habitat for a diverse macroinvertebrate community that has not been well characterized. Our study described this community in an oligotrophic marsh, compared it with the macroinvertebrate community associated with adjacent epiphytic algae attached to macrophytes in the water column, and detected spatial patterns in density and community structure. The floating periphyton mat (floating mat) and epiphytic algae in the water column (submerged epiphyton) were sampled at 4 sites (1 km apart) in northern Shark River Slough, Everglades National Park (ENP), in the early (July) and late (November) wet season. Two perpendicular 90-m transects were established at each site and 100 samples were taken in a nested design. Sites were located in wet-prairie spikerush-dominated sloughs with similar water depths and emergent macrophyte communities. Floating mats were sampled by taking cores (6-cm diameter) that were sorted under magnification to enumerate infauna retained on a 250-μm-mesh sieve and with a maximum dimension >1 mm. Our results showed that floating mats provide habitat for a macroinvertebrate community with higher densities (no. animals/g ash-free dry mass) of Hyalella azteca, Dasyhelea spp., and Cladocera, and lower densities of Chironomidae and Planorbella spp. than communities associated with submerged epiphyton. Densities of the most common taxa increased 3× to 15× from early to late wet season, and community differences between the 2 habitat types became more pronounced. Floating-mat coverage and estimated floating-mat biomass increased 20 to 30% and 30 to 110%, respectively, at most sites in the late wet season. Some intersite variation was observed in individual taxa, but no consistent spatial pattern in any taxon was detected at any scale (from 0.2 m to 3 km). Floating mats and their resident macroinvertebrate communities are important components in the Everglades food web. This community should be included in environmental monitoring programs because degradation and eventual loss of the calcareous periphyton mat is associated with P enrichment in this ecosystem.
Resumo:
Habitat selection decisions by consumers has the potential to shape ecosystems. Understanding the factors that influence habitat selection is therefore critical to understanding ecosystem function. This is especially true of mesoconsumers because they provide the link between upper and lower tropic levels. We examined the factors influencing microhabitat selection of marine mesoconsumers – juvenile giant shovelnose rays (Glaucostegus typus), reticulate whiprays (Himantura uarnak), and pink whiprays (H. fai) – in a coastal ecosystem with intact predator and prey populations and marked spatial and temporal thermal heterogeneity. Using a combination of belt transects and data on water temperature, tidal height, prey abundance, predator abundance and ray behavior, we found that giant shovelnose rays and reticulate whiprays were most often found resting in nearshore microhabitats, especially at low tidal heights during the warm season. Microhabitat selection did not match predictions derived from distributions of prey. Although at a course scale, ray distributions appeared to match predictions of behavioral thermoregulation theory, fine-scale examination revealed a mismatch. The selection of the shallow nearshore microhabitat at low tidal heights during periods of high predator abundance (warm season) suggests that this microhabitat may serve as a refuge, although it may come with metabolic costs due to higher temperatures. The results of this study highlight the importance of predators in the habitat selection decisions of mesoconsumers and that within thermal gradients, factors, such as predation risk, must be considered in addition to behavioral thermoregulation to explain habitat selection decisions. Furthermore, increasing water temperatures predicted by climate change may result in complex trade-offs that might have important implications for ecosystem dynamics.
Resumo:
Predation, predation risk, and resource quality affect suites of prey traits that collectively impact individual fitness, population dynamics, and community structure. However, studies of multi-trophic level effects generally focus on a single prey trait, failing to capture trade-offs among suites of covarying traits that govern population responses and emergent community patterns. We used structural equation models (SEM) to summarize the non-lethal and lethal effects of crayfish, Procambarus fallax, and phosphorus (P) addition, which affected prey food quality (periphyton), on the interactive effects of behavioral, morphological, developmental, and reproductive traits of snails, Planorbella duryi. Univariate and multivariate analyses suggested trade-offs between production (growth, reproduction) and defense (foraging behavior, shell shape) traits of snails in response to non-lethal crayfish and P addition, but few lethal effects. SEM revealed that non-lethal crayfish effects indirectly limited per capita offspring standing stock by increasing refuge use, slowing individual growth, and inducing snails to produce thicker, compressed shells. The negative effects of non-lethal crayfish on snails were strongest with P addition; snails increased allocation to shell defense rather than growth or reproduction. However, compared to ambient conditions, P addition with non-lethal crayfish still yielded greater per capita offspring standing stock by speeding individual snail growth enabling them to produce more offspring that also grew faster. Increased refuge use in response to non-lethal crayfish led to a non-lethal trophic cascade that altered the spatial distribution of periphyton. Independent of crayfish effects, snails stimulated periphyton growth through nutrient regeneration. These findings illustrate the importance of studying suites of traits that reveal costs associated with inducing different traits and how expressing those traits impacts population and community level processes.
Resumo:
We hypothesized that fishes in short-hydroperiod wetlands display pulses in activity tied to seasonal flooding and drying, with relatively low activity during intervening periods. To evaluate this hypothesis, sampling devices that funnel fish into traps (drift fences) were used to investigate fish movement across the Everglades, U.S.A. Samples were collected at six sites in the Rocky Glades, a seasonally flooded karstic habitat located on the southeastern edge of the Everglades. Four species that display distinct recovery patterns following drought in long-hydroperiod wetlands were studied: eastern mosquitofish (Gambusia holbrooki) and flagfish (Jordanella floridae) (rapid recovery); and bluefin killifish (Lucania goodei) and least killifish (Heterandria formosa) (slow recovery). Consistent with our hypothesized conceptual model, fishes increased movement soon after flooding (immigration period) and just before drying (emigration period), but decreased activity in the intervening foraging period. We also found that eastern mosquitofish and flagfish arrived earlier and showed stronger responses to hydrological variation than either least killifish or bluefin killifish. We concluded that these fishes actively colonize and escape ephemeral wetlands in response to flooding and drying, and display species-specific differences related to flooding and drying that reflect differences in dispersal ability. These results have important implications for Everglades fish metacommunity dynamics.
Resumo:
The pine rocklands of South Florida are characterized by an herbaceous flora with many narrowly endemic taxa, a diverse shrub layer containing several palms and numerous tropical hardwoods, and an overstory of south Florida slash pine (Pinus elliottii var. densa). Fire has been considered as an important environmental factor for these ecosystems, since in the absence of fire these pine forests are replaced by dense hardwood communities, resulting in loss of the characteristic pineland herb flora. Hence, in the Florida Keys pine forests, prescribed fire has been used since the creation of the National Key Deer Refuge. However, such prescribed burns were conducted in the Refuge mainly for fuel reduction, without much consideration of ecological factors. The USGS and Florida International University conducted a research study for four years, from 1998 to 2001, the objective of which was to document the response of pine rockland vegetation to a range of fire management options and to provide Fish and Wildlife Service and other land managers with information useful in deciding when and where to burn to perpetuate these unique pine forests. This study is described in detail in Snyder et al. (2005).
Resumo:
This dissertation focused on developing an integrated surface – subsurface hydrologic simulation numerical model by programming and testing the coupling of the USGS MODFLOW-2005 Groundwater Flow Process (GWF) package (USGS, 2005) with the 2D surface water routing model: FLO-2D (O’Brien et al., 1993). The coupling included the necessary procedures to numerically integrate and verify both models as a single computational software system that will heretofore be referred to as WHIMFLO-2D (Wetlands Hydrology Integrated Model). An improved physical formulation of flow resistance through vegetation in shallow waters based on the concept of drag force was also implemented for the simulations of floodplains, while the use of the classical methods (e.g., Manning, Chezy, Darcy-Weisbach) to calculate flow resistance has been maintained for the canals and deeper waters. A preliminary demonstration exercise WHIMFLO-2D in an existing field site was developed for the Loxahatchee Impoundment Landscape Assessment (LILA), an 80 acre area, located at the Arthur R. Marshall Loxahatchee National Wild Life Refuge in Boynton Beach, Florida. After applying a number of simplifying assumptions, results have illustrated the ability of the model to simulate the hydrology of a wetland. In this illustrative case, a comparison between measured and simulated stages level showed an average error of 0.31% with a maximum error of 2.8%. Comparison of measured and simulated groundwater head levels showed an average error of 0.18% with a maximum of 2.9%.
Resumo:
Bromeliads are an important microhabitat for the herpetofauna, for being widely used as refuge from predators and their leaf architecture allows humidity maintenance and relatively constant temperature inside, setting a favorable environment for amphibians and reptiles, especially in areas under hydric stress. However, studies addressing this relationship are still incipient and more concentrated in fitotelmatas bromeliad. For non-fitotelmatas rupicolous bromeliads of the gender Encholirium, which develops into rocky outcrops and contains species of semi-arid regions such as the Caatinga, animal-plant relationships are almost unknown. In this context, this study aimed to know the herpetological fauna inhabitant of macambiras bromeliads, Encholirium spectabile, analyzing occupation and use of these bromeliads by different taxa, and the behavioral ecology of the lizard Psychosaura agmosticha, seeking to identify factors associated with this strict relationship in Caatinga. An extensive review of the world literature on the subject “lizards in bromeliads” subsidized this study from the ecological perspective of this association. The field work was carried out at Fazenda Tanques, municipality of Santa Maria / RN, mesoregion of Agreste Potiguar. The observations and/or data collection in daytime and in the evening was conducted monthly during three consecutive days, from January 2011 to August 2012, totaling 450 hour.man of sampling effort. Sixteen species were registered: six lizards (Mabuyidae, Tropiduridae, Gekkonidae and Phyllodactylidae Families), six snakes (Boidae and Dipsadidae Families) and four of amphibians of Hylidae Family. The effect of the forest edge on the distribution of species along the outcrop was significant, with most species found in outcrop edges. Significant difference was found between some pairs of species concerning use of bromeliads, and almost total niche overlap in the use of microhabitat. 62.5% of the species are nocturnal and use these plants for sheltering, breeding and feeding. Regarding the relations between 4 the lizard Psychosaura agmosticha and macambiras bromeliads, behaviors of thermoregulation and foraging in the dry and wet seasons were recorded. Activity periods were concentrated between 7 and 10 am and between 3 and 5 pm in both seasons, showing a clear bimodal pattern. The species basically used the green leaves and there were no significant differences between males and females in the use of bromeliads. Positive associations were found between body temperature and temperatures of bromeliads and air. This species spent 1.95% ± 3.8 of the time moving (PTM) and moved on average 0:36 ± 2.1 seconds per minute (MPM), with significant differences between the wet and dry to PTM, and between the average time of stop and average duration of movements, being considered a sedentary forager. Psychosaura agmosticha, in the study area, is bromelicolous and uses macambiras primarily for thermoregulation and foraging. The results of this study elevate the rupicolous bromeliads Encholirium spectabile as key elements for the maintenance of amphibians and reptiles associated with it, and a clear advantageous association for the conservation of the groups involved.
Resumo:
Residential homegardens have environmental and social roles in the urban environment. These green spaces can potentially minimize the impacts caused by the growth of cities, being an alternative to connect fragmented areas or offer refuge to wildlife and therefore support the conservation of biodiversity. In addition, the homegardens demonstrate a leading role in increasing human well-being by promoting socialization opportunities, contact with nature, local culture as well as improvements in food security for the urban families. Nevertheless, it is still unclear what specific characteristics of homegardens can act effectively in the conservation of the biodiversity, as well as in the construction of food security and well being of the homegardeners and their families. The first chapter of this thesis analyzed the diversity of plant species (native and exotic) and assessed the contribution of different types of urban gardens (ornamental and forest gardens alike) in the presence of wildlife such as birds, monkeys and lizards. In the second chapter we evaluated the contribution of those gardens to the welfare and food security of their owners. In order to do this, 41 gardens were visited in Pium, a southern coastal town in the northeastern Brazil, which also happens to be in a periurban region undergoing rapid urban expansion and pressure from the real estate market. We surveyed the planned biodiversity and fauna associated with homegardens. The data related to food security and welfare were sampled through interviews with the person in charge of taking care of the gardens. These interviews covered issues on the supply of food from the garden and absence of chemical products, as well as aspects of the GNH indicator (Gross National Happiness). The results showed that these homegardens generally contribute little to the maintenance of native plant species (native species = 29/ total = 187). From its main features, the gardens were classified as ornamental, forest gardens and forest farms. These groups had a different effect on the presence of the animals studied and the last two contained most of the sampled native species. The diversity of plants and trees was a good predictor of the presence of birds and monkeys. Thus, the contribution of yards for the conservation of biodiversity depends on the type of garden: some even can have negative effects on conservation. These results can direct new approaches to detailed understanding of gardens and also of public policies applied to urban planning. The results of the second chapter showed that the two types of forest gardens contributed to household food security, for providing food and medicinal herbs, which mostly did not have pesticides and chemical 12 fertilizers. But the three groups of gardens are important components for the well being of their stakeholders. Gardens help promote the transmission of knowledge on agriculture, socialization, contact with nature and bring up feelings related to peace and harmony. Thus, forest gardens can be considered important means to get through public projects and policies designed to encourage biodiversity and promote food security and well-being in urban areas
Resumo:
While the carnivores are considered regulators and structuring of natural communities are also extremely threatened by human activities. Endangered little-spotted-cat (Leopardus tigrinus) is one of the lesser known species from the Neotropical cats. In this work we investigate the occupancy and the activity pattern of L. tigrinus in Caatinga of Rio Grande do Norte testing: 1) how environmental and anthropogenic factors influence their occupation and 2) how biotic and abiotic factors influence their activity pattern. For this we raised occurrence data of species in 10 priority areas for conservation. We built hierarchical models of occupancy based on maximum likelihood to represent biological hypotheses which were ranked using the Akaike Information Criterion (AIC). According to the results the feline occupancy is more likely away from rural settlements and in areas with a higher proportion of woody vegetation. The opportunistic killing of L. tigrinus and in retaliation for poultry predation close to residential areas can explain this result; as well as more complex vegetation structure can better serve as refuge and ensure more food. Analyzing the records of the species through circular statistics we conclude that the activity pattern is mostly nocturnal, although considerable crepuscular and a small diurnal activity. L. tigrinus activity was directly affected by the availability of small terrestrial mammals, which are essentially nocturnal. In addition, the temperatures recorded in the environment directly and indirectly affect the activity of the little-spotted-cat, as also influence the activity of their potential prey. Generally, the cats were more active when possible prey were active, and this happened at night when lower temperatures are recorded. Moreover, the different lunar phases did not affect the activity pattern. The results improve the understanding of an endangered feline inhabiting the Caatinga biome, and thus can help develop conservation and management strategies, as well as in planning future research in this semi-arid ecosystem.
Resumo:
In recent years, temporal fluctuations in the abundance of C. d. davisiana have been used frequently as a highresolution stratigraphic and paleoenvironmental tool. The modern ecology and morphologic variation (temporal and geographic) of this radiolarian species is evaluated to ascertain its potential stratigraphic and paleoenvironmental significance. Statistics were obtained on the width and height of all C. d. davisiana segments from Pleistocene populations of differing ages from the Northern Hemisphere (Labrador Sea and Iceland-Faeroe Ridge) and Southern Hemisphere (Namibian shelf and Meteor Rise). Results reveal that segment height variations between and within populations are more conservative than segment width. The mean sizes of the thorax and first abdominal segment have distinguishable differences between C. d. davisiana found in the North and South Atlantic. All populations have no significant difference in first abdominal segment width, however, mean heights of this segment differ greatly between populations of the North and South Atlantic. Second abdominal segment sizes show no clear population grouping. Size differences in post-cephalic segment size of these populations would appear to be related to some isolation of gene pools and possibly unknown paleoenvironmental factors. Temporal changes in the postcephalic size of C. d. davisiana may be used to: (1) identify temporally equivalent peaks in abundance of the species in a given region, (2) possibly evaluate the degree of mixing of water'masses between regions, and (3) trace the initial spread of the species from its area of origin. Cleve's 1887 plankton samples, between Greenland and Spitzsbergen, were studied and used in conjunction with other data to make the following conclusions on the modern ecology of C. d. davisiana in the Arctic and Greenland-Norwegian Seas. (1) It is presently absent in surface water plankton samples, (2) it currently lives at depths below 500 m, where it is rare, (3) it does not live in the upper 200 m under Arctic ice but is rare at greater depths, (4) it is absent in the upper 200 m near permanent Greenland Sea ice where normal oceanic salinity prevails, and (5) it is most common in deep marginal fjord environments which may serve as a refuge for the species during interglacial periods. In the Atlantic Ocean, the abundance of C. d. davisiana does not exceed 1% of the assemblage between the Subtropical Convergence of each hemisphere. In the Norwegian and Labrador Seas the species may occasionally be in the range of 1-5% of the modern radiolarian assemblage and never more than 5% in the southern high latitudes. Apparently only in the modern Sea of Okhotsk, does the species presently occur in high abundance. We concur with Morley and Hays (1983) that increased abundances are likely caused by the development of a strong low-salinity surface layer associated with seasonal sea ice melting and a strong temperature minimum above warmer and higher salinity intermediate waters. Similar conditions were frequent during the Pleistocene in the high latitudes and its modern scarcity outside the Sea of Okhotsk must be related to the absence of the presently unique conditions in the latter region.