969 resultados para recombinant interleukin 1 receptor blocking agent


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of hematopoietic precursor cell with bone marrow stromal cells is assumed to be important to the survival of hematopoietic precursor cells during hematopoietic cell long-term culture. Early hematopoietic stem cells are preferentially found within the stromal adherent cell fraction in primary long-term bone marrow cultures. The purpose of this dissertation was to understand the molecular mechanisms that govern these interactions for the regulation of survival and proliferation of early versus late hematopoietic cells.^ Monoclonal antibodies to the VLA-4 recognize the alpha4 beta1 integrin receptor on human hematopoietic cells. This monoclonal antibody blocks the adhesion between early hematopoietic progenitor cells (CD34 selected cells) and stromal cells when added to cultures of these cells. Addition of the VLA-4 monoclonal antibody to cultures of stromal cells and CD34 selected cells was shown to induce apoptosis of CD34 selected cells in these CD34 selected cell/stromal cell cocultures, as measured by the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end-labeling method. In contrast to these experiments with early hematopoietic progenitor cells (CD34+), the level of adhesion between more differentiated cells (unfractionated hematopoietic cells) and stromal cells was not significantly altered by addition of the anti-VLA-4 monoclonal antibody. Similarly, the level of apoptosis of unfractionated hematopoietic cells was not significantly increased by the addition of anti-VLA-4 monoclonal antibody to cultures of the latter cells with stromal cells. The binding of the unfractionated cells is less than that of the CD34 selected. Since there is no difference between the alpha4 beta1 integrin expression level of the early and late myeloid cells, there may be a difference in the functional state of the integrin between the early and late myeloid cells. We also show that CD34+ selected precursor cells proliferate at a higher rate when these cells are plated on recombinant VCAM-1 molecules. These data indicate that the alpha4beta1 integrin receptor (VLA-4) plays a central role in the apoptosis rescue function which results from the anchorage-dependent growth of the CD34 selected early hematopoietic cells on stromal cells. The data suggest that these apoptosis rescue pathways have less significance as the cells mature and become anchorage-independent in their growth. These data should assist in the design of systems for the ex vivo proliferation and transduction of early hematopoietic cells for genetic therapy. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Neuroendocrine tumors are well vascularized and express specific cell surface markers, such as somatostatin receptors and the glucagon-like peptide-1 receptor (GLP-1R). Using the Rip1Tag2 transgenic mouse model of pancreatic neuroendocrine tumors (pNET), we have investigated the potential benefit of a combination of anti-angiogenic treatment with targeted internal radiotherapy. METHODS [Lys40(Ahx-DTPA-111In)NH2]-exendin-4, a radiopeptide that selectively binds to GLP-1R expressed on insulinoma and other neuroendocrine tumor cells, was co-administered with oral vatalanib (an inhibitor of vascular endothelial growth factor receptors (VEGFR)) or imatinib (a c-kit/PDGFR inhibitor). The control groups included single-agent kinase inhibitor treatments and [Lys40(Ahx-DTPA-natIn)NH2]-exendin-4 monotherapy. For biodistribution, Rip1Tag2 mice were pre-treated with oral vatalanib or imatinib for 0, 3, 5, or 7 days at a dose of 100 mg/kg. Subsequently, [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 was administered i.v., and the biodistribution was assessed after 4 h. For therapy, the mice were injected with 1.1 MBq [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 and treated with vatalanib or imatinib 100 mg/kg orally for another 7 days. Tumor volume, tumor cell apoptosis and proliferation, and microvessel density were quantified. RESULTS Combination of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 and vatalanib was significantly more effective than single treatments (p < 0.05) and reduced the tumor volume by 97% in the absence of organ damage. The pre-treatment of mice with vatalanib led to a reduction in the tumor uptake of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4, indicating that concomitant administration of vatalanib and the radiopeptide was the best approach. Imatinib did not show a synergistic effect with [Lys40(Ahx-DTPA-111In)NH2]-exendin-4. CONCLUSION The combination of 1.1 MBq of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 with 100 mg/kg vatalanib had the same effect on a neuroendocrine tumor as the injection of 28 MBq of the radiopeptide alone but without any apparent side effects, such as radiation damage of the kidneys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is still controversial which mediators regulate energy provision to activated neural cells, as insulin does in peripheral tissues. Interleukin-1β (IL-1β) may mediate this effect as it can affect glucoregulation, it is overexpressed in the 'healthy' brain during increased neuronal activity, and it supports high-energy demanding processes such as long-term potentiation, memory and learning. Furthermore, the absence of sustained neuroendocrine and behavioral counterregulation suggests that brain glucose-sensing neurons do not perceive IL-1β-induced hypoglycemia. Here, we show that IL-1β adjusts glucoregulation by inducing its own production in the brain, and that IL-1β-induced hypoglycemia is myeloid differentiation primary response 88 protein (MyD88)-dependent and only partially counteracted by Kir6.2-mediated sensing signaling. Furthermore, we found that, opposite to insulin, IL-1β stimulates brain metabolism. This effect is absent in MyD88-deficient mice, which have neurobehavioral alterations associated to disorders in glucose homeostasis, as during several psychiatric diseases. IL-1β effects on brain metabolism are most likely maintained by IL-1β auto-induction and may reflect a compensatory increase in fuel supply to neural cells. We explore this possibility by directly blocking IL-1 receptors in neural cells. The results showed that, in an activity-dependent and paracrine/autocrine manner, endogenous IL-1 produced by neurons and astrocytes facilitates glucose uptake by these cells. This effect is exacerbated following glutamatergic stimulation and can be passively transferred between cell types. We conclude that the capacity of IL-1β to provide fuel to neural cells underlies its physiological effects on glucoregulation, synaptic plasticity, learning and memory. However, deregulation of IL-1β production could contribute to the alterations in brain glucose metabolism that are detected in several neurologic and psychiatric diseases.Molecular Psychiatry advance online publication, 8 December 2015; doi:10.1038/mp.2015.174.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE The treatment of lupus nephritis is still an unmet medical need requiring new therapeutic approaches. Our group found recently that irinotecan, an inhibitor of topoisomerase I (topo I), reversed proteinuria and prolonged survival in mice with advanced lupus nephritis. While irinotecan is known to stabilize the complex of topo I and DNA, the enzyme tyrosyl-DNA phosphodiesterase 1 (TDP-1) functions in an opposing manner by releasing topo I from DNA. Therefore, we undertook this study to test whether the TDP-1 inhibitor furamidine has an additional effect on lupus nephritis when used in combination with irinotecan. METHODS NZB/NZW mice were treated with low-dose irinotecan and furamidine either alone or in combination beginning at age 26 weeks. DNA relaxation was visualized using gel electrophoresis. Binding of anti-double-stranded DNA (anti-dsDNA) antibodies to DNA modified by topo I, TDP-1, and the topo I inhibitor camptothecin was determined by enzyme-linked immunosorbent assay. RESULTS Compared to treatment with either agent alone, simultaneous treatment with low-dose irinotecan and furamidine significantly improved survival of NZB/NZW mice. Similar to what has been previously shown for irinotecan alone, the combination treatment did not change the levels of anti-dsDNA antibodies. In vitro, recombinant TDP-1 increased topo I-mediated DNA relaxation, resulting in enhanced binding of anti-dsDNA antibodies. In combination with topo I and camptothecin, TDP-1 reversed the inhibitory effects of camptothecin on DNA relaxation and anti-dsDNA binding. CONCLUSION Affecting DNA relaxation by the enzymes topo I and TDP-1 and their inhibitors may be a promising approach for the development of new targeted therapies for systemic lupus erythematosus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endothelial-selective delivery of therapeutic agents, such as drugs or genes, would provide a useful tool for modifying vascular function in various disease states. A potential molecular target for such delivery is E-selectin, an endothelial-specific cell surface molecule expressed at sites of activation in vivo and inducible in cultured human umbilical vein endothelial cells (HUVEC) by treatment with cytokines such as recombinant human interleukin 1β (IL-1β). Liposomes of various types (classical, sterically stabilized, cationic, pH-sensitive), each conjugated with mAb H18/7, a murine monoclonal antibody that recognizes the extracellular domain of E-selectin, bound selectively and specifically to IL-1β-activated HUVEC at levels up to 275-fold higher than to unactivated HUVEC. E-selectin-targeted immunoliposomes appeared in acidic, perinuclear vesicles 2–4 hr after binding to the cell surface, consistent with internalization via the endosome/lysosome pathway. Activated HUVEC incubated with E-selectin-targeted immunoliposomes, loaded with the cytotoxic agent doxorubicin, exhibited significantly decreased cell survival, whereas unactivated HUVEC were unaffected by such treatment. These results demonstrate the feasibility of exploiting cell surface activation markers for the endothelial-selective delivery of biologically active agents via immunoliposomes. Application of this targeting approach in vivo may lead to novel therapeutic strategies in the treatment of cardiovascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophages play a key role in both normal and pathological processes involving immune and inflammatory responses, to a large extent through their capacity to secrete a wide range of biologically active molecules. To identify some of these as yet not characterized molecules, we have used a subtraction cloning approach designed to identify genes expressed in association with macrophage activation. One of these genes, designated macrophage inhibitory cytokine 1 (MIC-1), encodes a protein that bears the structural characteristics of a transforming growth factor β (TGF-β) superfamily cytokine. Although it belongs to this superfamily, it has no strong homology to existing families, indicating that it is a divergent member that may represent the first of a new family within this grouping. Expression of MIC-1 mRNA in monocytoid cells is up-regulated by a variety of stimuli associated with activation, including interleukin 1β, tumor necrosis factor α (TNF-α), interleukin 2, and macrophage colony-stimulating factor but not interferon γ, or lipopolysaccharide (LPS). Its expression is also increased by TGF-β. Expression of MIC-1 in CHO cells results in the proteolytic cleavage of the propeptide and secretion of a cysteine-rich dimeric protein of Mr 25 kDa. Purified recombinant MIC-1 is able to inhibit lipopolysaccharide -induced macrophage TNF-α production, suggesting that MIC-1 acts in macrophages as an autocrine regulatory molecule. Its production in response to secreted proinflammatory cytokines and TGF-β may serve to limit the later phases of macrophage activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Certain peptides derived from the α1 domain of the major histocompatibility class I antigen complex (MHC-I) inhibit receptor internalization, increasing the steady-state number of active receptors on the cell surface and thereby enhancing the sensitivity to hormones and other agonists. These peptides self-assemble, and they also bind to MHC-I at the same site from which they are derived, suggesting that they could bind to receptor sites with significant sequence similarity. Receptors affected by MHC-I peptides do, indeed, have such sequence similarity, as illustrated here by insulin receptor (IR) and insulin-like growth factor-1 receptor. A synthetic peptide with sequence identical to a certain extracellular receptor domain binds to that receptor in a ligand-dependent manner and inhibits receptor internalization. Moreover, each such peptide is selective for its cognate receptor. An antibody to the IR peptide not only binds to IR and competes with the peptide but also inhibits insulin-dependent internalization of IR. These observations, and binding studies with deletion mutants of IR, indicate that the sequence QILKELEESSF encoded by exon 10 plays a key role in IR internalization. Our results illustrate a principle for identifying receptor-specific sites of importance for receptor internalization, and for enhancing sensitivity to hormones and other agonists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SOCS-1, a member of the suppressor of cytokine signaling (SOCS) family, was identified in a genetic screen for inhibitors of interleukin 6 signal transduction. SOCS-1 transcription is induced by cytokines, and the protein binds and inhibits Janus kinases and reduces cytokine-stimulated tyrosine phosphorylation of signal transducers and activators of transcription 3 and the gp130 component of the interleukin 6 receptor. Thus, SOCS-1 forms part of a feedback loop that modulates signal transduction from cytokine receptors. To examine the role of SOCS-1 in vivo, we have used gene targeting to generate mice lacking this protein. SOCS-1−/− mice exhibited stunted growth and died before weaning with fatty degeneration of the liver and monocytic infiltration of several organs. In addition, the thymus of SOCS-1−/− mice was reduced markedly in size, and there was a progressive loss of maturing B lymphocytes in the bone marrow, spleen, and peripheral blood. Thus, SOCS-1 is required for in vivo regulation of multiple cell types and is indispensable for normal postnatal growth and survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin 10 (IL-10) is a recently described natural endogenous immunosuppressive cytokine that has been identified in human, murine, and other organisms. Human IL-10 (hIL-10) has high homology with murine IL-10 (mIL-10) as well as with an Epstein–Barr virus genome product BCRFI. This viral IL-10 (vIL-10) shares a number of activities with hIL-10. IL-10 significantly affects chemokine biology, because human IL-10 inhibits chemokine production and is a specific chemotactic factor for CD8+ T cells. It suppresses the ability of CD4+ T cells, but not CD8+ T cells, to migrate in response to IL-8. A nonapeptide (IT9302) with complete homology to a sequence of hIL-10 located in the C-terminal portion (residues 152–160) of the cytokine was found to possess activities that mimic some of those of hIL-10. These are: (i) inhibition of IL-1β-induced IL-8 production by peripheral blood mononuclear cell, (ii) inhibition of spontaneous IL-8 production by cultured human monocytes, (iii) induction of IL-1 receptor antagonistic protein production by human monocytes, (iv) induction of chemotactic migration of CD8+ human T lymphocytes in vitro, (v) desensitization of human CD8+ T cells resulting in an unresponsiveness toward rhIL-10-induced chemotaxis, (vi) suppression of the chemotactic response of CD4+ T human lymphocytes toward IL-8, (vii) induction of IL-4 production by cultured normal human CD4+ T cells, (viii) down-regulation of tumor necrosis factor-α production by CD8+ T cells, and (ix) inhibition of class II major histocompatibility complex antigen expression on IFN-γ-stimulated human monocytes. Another nonapeptide (IT9403) close to the NH2-terminal part of hIL-10 did not reveal cytokine synthesis inhibitory properties, but proved to be a regulator of mast cell proliferation. In conclusion, we have identified two functional domains of IL-10 exerting different IL-10 like activities, an observation that suggests that relatively small segments of these signal proteins are responsible for particular biological functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor cell invasion relies on cell migration and extracellular matrix proteolysis. We investigated the contribution of different integrins to the invasive activity of mouse mammary carcinoma cells. Antibodies against integrin subunits α6 and β1, but not against α1 and α2, inhibited cell locomotion on a reconstituted basement membrane in two-dimensional cell migration assays, whereas antibodies against β1, but not against α6 or α2, interfered with cell adhesion to basement membrane constituents. Blocking antibodies against α1 integrins impaired only cell adhesion to type IV collagen. Antibodies against α1, α2, α6, and β1, but not α5, integrin subunits reduced invasion of a reconstituted basement membrane. Integrins α1 and α2, which contributed only marginally to motility and adhesion, regulated proteinase production. Antibodies against α1 and α2, but not α6 and β1, integrin subunits inhibited both transcription and protein expression of the matrix metalloproteinase stromelysin-1. Inhibition of tumor cell invasion by antibodies against α1 and α2 was reversed by addition of recombinant stromelysin-1. In contrast, stromelysin-1 could not rescue invasion inhibited by anti-α6 antibodies. Our data indicate that α1 and α2 integrins confer invasive behavior by regulating stromelysin-1 expression, whereas α6 integrins regulate cell motility. These results provide new insights into the specific functions of integrins during tumor cell invasion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multipotential cytokine transforming growth factor-β (TGF-β) is secreted in a latent form. Latency results from the noncovalent association of TGF-β with its processed propeptide dimer, called the latency-associated peptide (LAP); the complex of the two proteins is termed the small latent complex. Disulfide bonding between LAP and latent TGF-β–binding protein (LTBP) produces the most common form of latent TGF-β, the large latent complex. The extracellular matrix (ECM) modulates the activity of TGF-β. LTBP and the LAP propeptides of TGF-β (isoforms 1 and 3), like many ECM proteins, contain the common integrin-binding sequence RGD. To increase our understanding of latent TGF-β function in the ECM, we determined whether latent TGF-β1 interacts with integrins. A549 cells adhered and spread on plastic coated with LAP, small latent complex, and large latent complex but not on LTBP-coated plastic. Adhesion was blocked by an RGD peptide, and cells were unable to attach to a mutant form of recombinant LAP lacking the RGD sequence. Adhesion was also blocked by mAbs to integrin subunits αv and β1. We purified LAP-binding integrins from extracts of A549 cells using LAP bound to Sepharose. αvβ1 eluted with EDTA. After purification in the presence of Mn2+, a small amount of αvβ5 was also detected. A549 cells migrated equally on fibronectin- and LAP-coated surfaces; migration on LAP was αvβ1 dependent. These results establish αvβ1 as a LAP-β1 receptor. Interactions between latent TGF-β and αvβ1 may localize latent TGF-β to the surface of specific cells and may allow the TGF-β1 gene product to initiate signals by both TGF-β receptor and integrin pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Fas/APO-1-receptor associated cysteine protease Mch5 (MACH/FLICE) is believed to be the enzyme responsible for activating a protease cascade after Fas-receptor ligation, leading to cell death. The Fas-apoptotic pathway is potently inhibited by the cowpox serpin CrmA, suggesting that Mch5 could be the target of this serpin. Bacterial expression of proMch5 generated a mature enzyme composed of two subunits, which are derived from the precursor proenzyme by processing at Asp-227, Asp-233, Asp-391, and Asp-401. We demonstrate that recombinant Mch5 is able to process/activate all known ICE/Ced-3-like cysteine proteases and is potently inhibited by CrmA. This contrasts with the observation that Mch4, the second FADD-related cysteine protease that is also able to process/activate all known ICE/Ced-3-like cysteine proteases, is poorly inhibited by CrmA. These data suggest that Mch5 is the most upstream protease that receives the activation signal from the Fas-receptor to initiate the apoptotic protease cascade that leads to activation of ICE-like proteases (TX, ICE, and ICE-relIII), Ced-3-like proteases (CPP32, Mch2, Mch3, Mch4, and Mch6), and the ICH-1 protease. On the other hand, Mch4 could be a second upstream protease that is responsible for activation of the same protease cascade in CrmA-insensitive apoptotic pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poxviruses employ many strategies to evade and neutralize the host immune response. In this study, we have identified two vaccinia virus ORFs, termed A46R and A52R, that share amino acid sequence similarity with the Toll/IL-1 receptor (TIR) domain, a motif that defines the IL-1/Toll-like receptor (TLR) superfamily of receptors, which have a key role in innate immunity and inflammation. When expressed in mammalian cells, the protein products of both ORFs were shown to interfere specifically with IL-1 signal transduction. A46R partially inhibited IL-1-mediated activation of the transcription factor NFκB, and A52R potently blocked both IL-1- and TLR4-mediated NFκB activation. MyD88 is a TIR domain-containing adapter molecule known to have a central role in both IL-1 and TLR4 signaling. A52R mimicked the dominant-negative effect of a truncated version of MyD88 on IL-1, TLR4, and IL-18 signaling but had no effect on MyD88-independent signaling pathways. Therefore, A46R and A52R are likely to represent a mechanism used by vaccinia virus of suppressing TIR domain-dependent intracellular signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the effect of N-cadherin, and its free or membrane-anchored cytoplasmic domain, on the level and localization of β-catenin and on its ability to induce lymphocyte enhancer-binding factor 1 (LEF-1)-responsive transactivation. These cadherin derivatives formed complexes with β-catenin and protected it from degradation. N-cadherin directed β-catenin into adherens junctions, and the chimeric protein induced diffuse distribution of β-catenin along the membrane whereas the cytoplasmic domain of N-cadherin colocalized with β-catenin in the nucleus. Cotransfection of β-catenin and LEF-1 into Chinese hamster ovary cells induced transactivation of a LEF-1 reporter, which was blocked by the N-cadherin-derived molecules. Expression of N-cadherin and an interleukin 2 receptor/cadherin chimera in SW480 cells relocated β-catenin from the nucleus to the plasma membrane and reduced transactivation. The cytoplasmic tails of N- or E-cadherin colocalized with β-catenin in the nucleus, and suppressed the constitutive LEF-1-mediated transactivation, by blocking β-catenin–LEF-1 interaction. Moreover, the 72 C-terminal amino acids of N-cadherin stabilized β-catenin and reduced its transactivation potential. These results indicate that β-catenin binding to the cadherin cytoplasmic tail either in the membrane, or in the nucleus, can inhibit β-catenin degradation and efficiently block its transactivation capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown in several animal models that HIV infection of accessory cells (ACs) plays an important role in development of AIDS. Here, we report that ACs treated with HIV-1 Tat protein (Tat-ACs) have a decreased ability to organize cellular aggregates as compared with untreated ACs, resulting in incomplete activation of T cells in responses to anti-CD3 mAb or staphylococcal enterotoxin B stimulation. The T cells failed to up-regulate adhesion molecules CD11a and CD2 on the cell surface and had reduced proliferative responses, as determined by [3H]thymidine incorporation, but they obtained lymphoblast-like morphology and expressed early activation antigens on the cell surface such as Fas and CD69 and interleukin 2 receptor, at comparable levels as those T cells undergoing a maximal proliferation. These results suggest that the Tat-AC-induced defect occurs in the late, but not in the early, phases of T cell activation. Normal expression of cell surface Fas antigen accompanied by defects in late activation thus may result in the susceptibility of these T cells to apoptosis. Our studies suggest that dysfunction, hyperactivation, and susceptibility to apoptosis, as observed with T cells isolated from HIV-infected individuals, may be, at least in part, a consequence of abnormal functions of ACs.