884 resultados para random preference


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of calculating the probability of error in a DS/SSMA system has been extensively studied for more than two decades. When random sequences are employed some conditioning must be done before the application of the central limit theorem is attempted, leading to a Gaussian distribution. The authors seek to characterise the multiple access interference as a random-walk with a random number of steps, for random and deterministic sequences. Using results from random-walk theory, they model the interference as a K-distributed random variable and use it to calculate the probability of error in the form of a series, for a DS/SSMA system with a coherent correlation receiver and BPSK modulation under Gaussian noise. The asymptotic properties of the proposed distribution agree with other analyses. This is, to the best of the authors' knowledge, the first attempt to propose a non-Gaussian distribution for the interference. The modelling can be extended to consider multipath fading and general modulation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undirected graphical models are widely used in statistics, physics and machine vision. However Bayesian parameter estimation for undirected models is extremely challenging, since evaluation of the posterior typically involves the calculation of an intractable normalising constant. This problem has received much attention, but very little of this has focussed on the important practical case where the data consists of noisy or incomplete observations of the underlying hidden structure. This paper specifically addresses this problem, comparing two alternative methodologies. In the first of these approaches particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently explore the parameter space, combined with the exchange algorithm (Murray et al., 2006) for avoiding the calculation of the intractable normalising constant (a proof showing that this combination targets the correct distribution in found in a supplementary appendix online). This approach is compared with approximate Bayesian computation (Pritchard et al., 1999). Applications to estimating the parameters of Ising models and exponential random graphs from noisy data are presented. Each algorithm used in the paper targets an approximation to the true posterior due to the use of MCMC to simulate from the latent graphical model, in lieu of being able to do this exactly in general. The supplementary appendix also describes the nature of the resulting approximation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ensemble learning techniques generate multiple classifiers, so called base classifiers, whose combined classification results are used in order to increase the overall classification accuracy. In most ensemble classifiers the base classifiers are based on the Top Down Induction of Decision Trees (TDIDT) approach. However, an alternative approach for the induction of rule based classifiers is the Prism family of algorithms. Prism algorithms produce modular classification rules that do not necessarily fit into a decision tree structure. Prism classification rulesets achieve a comparable and sometimes higher classification accuracy compared with decision tree classifiers, if the data is noisy and large. Yet Prism still suffers from overfitting on noisy and large datasets. In practice ensemble techniques tend to reduce the overfitting, however there exists no ensemble learner for modular classification rule inducers such as the Prism family of algorithms. This article describes the first development of an ensemble learner based on the Prism family of algorithms in order to enhance Prism’s classification accuracy by reducing overfitting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generally classifiers tend to overfit if there is noise in the training data or there are missing values. Ensemble learning methods are often used to improve a classifier's classification accuracy. Most ensemble learning approaches aim to improve the classification accuracy of decision trees. However, alternative classifiers to decision trees exist. The recently developed Random Prism ensemble learner for classification aims to improve an alternative classification rule induction approach, the Prism family of algorithms, which addresses some of the limitations of decision trees. However, Random Prism suffers like any ensemble learner from a high computational overhead due to replication of the data and the induction of multiple base classifiers. Hence even modest sized datasets may impose a computational challenge to ensemble learners such as Random Prism. Parallelism is often used to scale up algorithms to deal with large datasets. This paper investigates parallelisation for Random Prism, implements a prototype and evaluates it empirically using a Hadoop computing cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper I analyze the general equilibrium in a random Walrasian economy. Dependence among agents is introduced in the form of dependency neighborhoods. Under the uncertainty, an agent may fail to survive due to a meager endowment in a particular state (direct effect), as well as due to unfavorable equilibrium price system at which the value of the endowment falls short of the minimum needed for survival (indirect terms-of-trade effect). To illustrate the main result I compute the stochastic limit of equilibrium price and probability of survival of an agent in a large Cobb-Douglas economy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to validate the reported precision of space‐based atmospheric composition measurements, validation studies often focus on measurements in the tropical stratosphere, where natural variability is weak. The scatter in tropical measurements can then be used as an upper limit on single‐profile measurement precision. Here we introduce a method of quantifying the scatter of tropical measurements which aims to minimize the effects of short‐term atmospheric variability while maintaining large enough sample sizes that the results can be taken as representative of the full data set. We apply this technique to measurements of O3, HNO3, CO, H2O, NO, NO2, N2O, CH4, CCl2F2, and CCl3F produced by the Atmospheric Chemistry Experiment–Fourier Transform Spectrometer (ACE‐FTS). Tropical scatter in the ACE‐FTS retrievals is found to be consistent with the reported random errors (RREs) for H2O and CO at altitudes above 20 km, validating the RREs for these measurements. Tropical scatter in measurements of NO, NO2, CCl2F2, and CCl3F is roughly consistent with the RREs as long as the effect of outliers in the data set is reduced through the use of robust statistics. The scatter in measurements of O3, HNO3, CH4, and N2O in the stratosphere, while larger than the RREs, is shown to be consistent with the variability simulated in the Canadian Middle Atmosphere Model. This result implies that, for these species, stratospheric measurement scatter is dominated by natural variability, not random error, which provides added confidence in the scientific value of single‐profile measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing models to predict the effects of social and economic change on agricultural landscapes is an important challenge. Model development often involves making decisions about which aspects of the system require detailed description and which are reasonably insensitive to the assumptions. However, important components of the system are often left out because parameter estimates are unavailable. In particular, measurements of the relative influence of different objectives, such as risk, environmental management, on farmer decision making, have proven difficult to quantify. We describe a model that can make predictions of land use on the basis of profit alone or with the inclusion of explicit additional objectives. Importantly, our model is specifically designed to use parameter estimates for additional objectives obtained via farmer interviews. By statistically comparing the outputs of this model with a large farm-level land-use data set, we show that cropping patterns in the United Kingdom contain a significant contribution from farmer’s preference for objectives other than profit. In particular, we found that risk aversion had an effect on the accuracy of model predictions, whereas preference for a particular number of crops grown was less important. While nonprofit objectives have frequently been identified as factors in farmers’ decision making, our results take this analysis further by demonstrating the relationship between these preferences and actual cropping patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ensemble learning can be used to increase the overall classification accuracy of a classifier by generating multiple base classifiers and combining their classification results. A frequently used family of base classifiers for ensemble learning are decision trees. However, alternative approaches can potentially be used, such as the Prism family of algorithms that also induces classification rules. Compared with decision trees, Prism algorithms generate modular classification rules that cannot necessarily be represented in the form of a decision tree. Prism algorithms produce a similar classification accuracy compared with decision trees. However, in some cases, for example, if there is noise in the training and test data, Prism algorithms can outperform decision trees by achieving a higher classification accuracy. However, Prism still tends to overfit on noisy data; hence, ensemble learners have been adopted in this work to reduce the overfitting. This paper describes the development of an ensemble learner using a member of the Prism family as the base classifier to reduce the overfitting of Prism algorithms on noisy datasets. The developed ensemble classifier is compared with a stand-alone Prism classifier in terms of classification accuracy and resistance to noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One central question in the formal linguistic study of adult multilingual morphosyntax (i.e., L3/Ln acquisition) involves determining the role(s) the L1 and/or the L2 play(s) at the L3 initial state (e.g., Bardel & Falk, Second Language Research 23: 459–484, 2007; Falk & Bardel, Second Language Research: forthcoming; Flynn et al., The International Journal of Multilingualism 8: 3–16, 2004; Rothman, Second Language Research: forthcoming; Rothman & Cabrelli, On the initial state of L3 (Ln) acquisition: Selective or absolute transfer?: 2007; Rothman & Cabrelli Amaro, Second Language Research 26: 219–289, 2010). The present article adds to this general program, testing Rothman's (Second Language Research: forthcoming) model for L3 initial state transfer, which when relevant in light of specific language pairings, maintains that typological proximity between the languages is the most deterministic variable determining the selection of syntactic transfer. Herein, I present empirical evidence from the later part of the beginning stages of L3 Brazilian Portuguese (BP) by native speakers of English and Spanish, who have attained an advanced level of proficiency in either English or Spanish as an L2. Examining the related domains of syntactic word order and relative clause attachment preference in L3 BP, the data clearly indicate that Spanish is transferred for both experimental groups irrespective of whether it was the L1 or L2. These results are expected by Rothman's (Second Language Research: forthcoming) model, but not necessarily predicted by other current hypotheses of multilingual syntactic transfer; the implications of this are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to many modern economic theories, actions simply reflect an individual's preferences, whereas a psychological phenomenon called “cognitive dissonance” claims that actions can also create preference. Cognitive dissonance theory states that after making a difficult choice between two equally preferred items, the act of rejecting a favorite item induces an uncomfortable feeling (cognitive dissonance), which in turn motivates individuals to change their preferences to match their prior decision (i.e., reducing preference for rejected items). Recently, however, Chen and Risen [Chen K, Risen J (2010) J Pers Soc Psychol 99:573–594] pointed out a serious methodological problem, which casts a doubt on the very existence of this choice-induced preference change as studied over the past 50 y. Here, using a proper control condition and two measures of preferences (self-report and brain activity), we found that the mere act of making a choice can change self-report preference as well as its neural representation (i.e., striatum activity), thus providing strong evidence for choice-induced preference change. Furthermore, our data indicate that the anterior cingulate cortex and dorsolateral prefrontal cortex tracked the degree of cognitive dissonance on a trial-by-trial basis. Our findings provide important insights into the neural basis of how actions can alter an individual's preferences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper we study the approximation of functions with bounded mixed derivatives by sparse tensor product polynomials in positive order tensor product Sobolev spaces. We introduce a new sparse polynomial approximation operator which exhibits optimal convergence properties in L2 and tensorized View the MathML source simultaneously on a standard k-dimensional cube. In the special case k=2 the suggested approximation operator is also optimal in L2 and tensorized H1 (without essential boundary conditions). This allows to construct an optimal sparse p-version FEM with sparse piecewise continuous polynomial splines, reducing the number of unknowns from O(p2), needed for the full tensor product computation, to View the MathML source, required for the suggested sparse technique, preserving the same optimal convergence rate in terms of p. We apply this result to an elliptic differential equation and an elliptic integral equation with random loading and compute the covariances of the solutions with View the MathML source unknowns. Several numerical examples support the theoretical estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Choices not only reflect our preference, but they also affect our behavior. The phenomenon of choice-induced preference change has been of interest to cognitive dissonance researchers in social psychology, and more recently, it has attracted the attention of researchers in economics and neuroscience. Preference modulation after the mere act of making a choice has been repeatedly demonstrated over the last 50 years by an experimental paradigm called the “free-choice paradigm.” However, Chen and Risen (2010) pointed out a serious methodological flaw in this paradigm, arguing that evidence for choice-induced preference change is still insufficient. Despite the flaw, studies using the traditional free-choice paradigm continue to be published without addressing the criticism. Here, aiming to draw more attention to this issue, we briefly explain the methodological problem, and then describe simple simulation studies that illustrate how the free-choice paradigm produces a systematic pattern of preference change consistent with cognitive dissonance, even without any change in true preference. Our stimulation also shows how a different level of noise in each phase of the free-choice paradigm independently contributes to the magnitude of artificial preference change. Furthermore, we review ways of addressing the critique and provide a meta-analysis to show the effect size of choice-induced preference change after addressing the critique. Finally, we review and discuss, based on the results of the stimulation studies, how the criticism affects our interpretation of past findings generated from the free-choice paradigm. We conclude that the use of the conventional free-choice paradigm should be avoided in future research and the validity of past findings from studies using this paradigm should be empirically re-established. (PsycINFO Database Record (c) 2013 APA, all rights reserved)(journal abstract)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taxonomic free sorting (TFS) is a fast, reliable and new technique in sensory science. The method extends the typical free sorting task where stimuli are grouped according to similarities, by asking respondents to combine their groups two at a time to produce a hierarchy. Previously, TFS has been used for the visual assessment of packaging whereas this study extends the range of potential uses of the technique to incorporate full sensory analysis by the target consumer, which, when combined with hedonic liking scores, was used to generate a novel preference map. Furthermore, to fully evaluate the efficacy of using the sorting method, the technique was evaluated with a healthy older adult consumer group. Participants sorted eight products into groups and described their reason at each stage as they combined those groups, producing a consumer-specific vocabulary. This vocabulary was combined with hedonic data from a separate group of older adults, to give the external preference map. Taxonomic sorting is a simple, fast and effective method for use with older adults, and its combination with liking data can yield a preference map constructed entirely from target consumer data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Older hospital patients are considered to be at risk of malnutrition due to insufficient dietary intake. OBJECTIVE: To determine whether taste enhancement, using ingredients naturally high in umami compounds, increases preference and consumption of a meal by older hospital patients. METHODS: 31 patients (65–92 years) on elderly carewards in aUKNHS Trust hospital took part in a single-blinded preference and consumption study. They tasted two meats (control and enhanced, presented in balanced order) and stated their preference. At lunch, control and enhanced cottage pie and gravy were served concurrently; patients were asked to consume ad libitum and intake was measured. RESULTS: Taste enhanced meat was significantly preferred (P = 0.001). Although mean consumption was higher for the enhanced compared to control meal (137 g versus 119 g), with higher levels of energy (103 kcal versus 82 kcal) and protein (4.6 g versus 3.4 g) consumed; differences were not significant. CONCLUSIONS: Natural ingredients rich in umami taste compounds can successfully be used to increase preference of meat based meals by older hospital patients. Larger trials are needed to determine whether such increases in preference can significantly increase consumption.