969 resultados para pulsed rapid thermal annealing (PRTA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of Cd1−xMnxS (0<=x<=0.5) were deposited on glass substrates by thermal evaporation. All the films were deposited at 300 K and annealed at 373, 473, and 573 K for 1 h in a high vacuum in the range 10−4 Pa. The as-deposited and the annealed films were characterized for composition, structure, and microstructure by using energy-dispersive X-ray, X-ray diffraction, scanning electron microscopy, and atomic force microscopy (AFM). The electrical properties were studied by Hall effect measurement. Electrical conductivity was studied in the temperature range 190–450 K. AFM studies showed that all the films were in nanocrystalline form with grain size varying in the range between 36 and 82 nm. Grain size studies showed a definite increase with annealing temperature. All the films exhibited wurtzite structure of the host material. The lattice parameter varied linearly with composition, following Vegard's law in the entire composition range. Grain size, electrical conductivity, Hall mobility, carrier concentration, and activation energy varied, exhibiting either maxima or minima at x=0.3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hot rolled two-phase Ti-22Al-25Nb (at.%) alloy containing the orthorhombic (O) and beta(B2) phases was subjected to thermal treatment under different conditions. The experiment was aimed to examine the recrystallization response of the beta(B2) phase (static and dynamic) to microstructure and crystallographic texture evolution using scanning electron microscopy coupled with electron backscattered diffraction (SEM-EBSD). Specimens rolled in the two-phase (O + beta(B2)) region consisted of highly deformed beta(B2) grains. The texture was close to that of the typical bcc deformation texture with a few additional texture components. A subsequent heat treatment of these rolled specimens in single beta(B2) phase region was characterized by static recrystallized beta(B2) grains with the final texture partly inherited from as-rolled material. In contrast, specimens rolled in the single beta(B2) region produced beta(B2) grains with the texture similar to that of completely dynamic recrystallized one. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ex-situ grown thin films of SrBi2Nb2O9 (SBN) were deposited on platinum substrates using laser ablation technique. A low substrate-temperature-processing route was chosen to avoid any diffusion of bismuth into the Pt electrode. It was observed that the as grown films showed an oriented growth along the 'c'-axis (with zero spontaneous polarization). The as grown films were subsequently annealed to enhance crystallization. Upon annealing, these films transformed into a polycrystalline structure, and exhibited excellent ferroelectric properties. The switching was made to be possible by lowering the thickness without losing the electrically insulating behavior of the films. The hysteresis results showed an excellent square-shaped loop with results (P-r = 4 muC/cm(2) E-c = 90 kV/cm) in good agreement with the earlier reports. The films also exhibited a dielectric constant of 190 and a dissipation factor of 0.02, which showed dispersion at low frequencies. The frequency dispersion was found to obey Jonscher's universal power law relation, and was attributed to the ionic charge hopping process according to earlier reports. The de transport studies indicated an ohmic behavior in the low voltage region, while higher voltages induced a bulk space charge and resulted in non-linear current-voltage dependence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As-deposited high Tc superconducting Y1Ba2Cu3O7−x films with zero resistance temperatures of similar, equals89 K and critical current densities about 0.7×106 A/cm2 at 77 K have been reproducibly fabricated at a substrate holder temperature at 650°C, using pulsed laser deposition, without post-annealing. One key to these results is the injection of gaseous oxygen into laser produced plume just in front of the target. In this way, the correct amount of oxygen is incorporated into the as-grown film so that post-deposition treatment becomes unnecessary. Axial ion channeling in these as-deposit high Tc superconducting films on (100) SrTiO3 and X-ray photoelectron spectroscopy (XPS) on the film surfaces were performed. Angular yield profile near the film surface for Ba, and the surface peak intensity were measured using 3 MeV He ions. For channeling normal to the substrate a minimum yield of 7%, compared to similar, equals3% for single crystals, was obtained. The results of ion channeling and XPS studies indicate that the as-deposited films have good crystallinity as well as toichiometry to within similar, equals1 nm of the film surface. The in-situ growth of such high Tc and Jc films is an important step in the use of the laser deposition technique to fabricate multilayer structures and the surface perfection is of importance in tunneling devices such as Josephson junctions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ni80Fe20 thin films with high orientation were grown on Si(1 0 0) using pulsed laser ablation. The anisotropic magnetoresistance (AMR) and the planar Hall measurements show a 2.5% resistance anisotropy and a 45% planar Hall voltage change for magnetic field sweep of 10 Oe. The planar Hall sensitivity dR/dH was found to be 900 Omega T-1 compared with a previously reported maximum of 340 Omega T-1 in the same system.Also these films are found to withstand repeated thermal cycling up to 110 degrees C and the Hall sensitivity remains constant within this temperature range. This combination of properties makes the system highly suitable for low magnetic field sensors, particularly in geomagnetic and biosensor applications. To elucidate this, we have demonstrated that these sensors are sensitive to Earth's magnetic field. These results are compared with the sputter deposited films which have a very low AMR and planar Hall voltage change as compared with the films grown by PLD. The possible reasons for these contrasting characteristics are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Annealing dependence of the lattice parameter, resistivity, magnetoresistance and thermopower have been studied on Nd0.87Sr0.33MnO3 thin films deposited on LaAlO3 and alumina substrates by pulsed laser ablation. Upon annealing at 800 degrees C and 1000 degrees C the lattice constant of the LaAlO3 film tends toward that of the bulk target due to reduction in oxygen vacancies. This results in a metal-insulator transition at temperatures which increase with progressive annealing along with a decrease in the observed low temperature MR. Using a magnon scattering model we estimate the e(g) bandwidth of the film annealed at 1000 degrees C and show that the magnon contribution to the resistivity is suppressed in a highly oxygen deficient film and gains prominence only upon subsequent annealing. We also show that upon annealing, the polaron concentration and the spin cluster size increases in the paramagnetic phase, using an adiabatic polaron hopping model which takes into account an exchange dependent activation energy above the resistivity peak.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problems in measuring thermal emittance by steady?state calorimetric technique have been analyzed. A few suggestions to make it more accurate, simple, and rapid have been discussed and results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline metals frequently exhibit poor thermal stability, and the exothermic peak in differential scanning calorimetry is usually attributed to grain growth. We show from experiments on electrodeposited nano-Ni with varying levels of S, and tests with microcrystalline Ni and S powders, that the exothermic peak is associated with the formation of a nickel sulfide phase and concurrent grain growth. Analysis suggests that segregation plays a more important role in limiting grain growth than second-phase particles in nano-Ni. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A molecule having a ketone group between two thiophene groups was synthesized. Presence of alternating electron donating and accepting moieties gives this material a donor-acceptor-donor (DAD) architecture. PolyDAD was synthesized from DAD monomer by oxidative polymerization. Device quality films of polyDAD were fabricated using pulsed laser deposition technique. X-ray photoelectron spectroscopy (XPS) and fourier transform infrared spectra (FTIR) data of both as synthesized and film indicate the material does not degrade during ablation. Optical band gap was determined to be about 1.45 eV. Four orders of magnitude increase in conductivity was observed from as synthesized to pulsed laser deposition (PLD) fabricated film of polyDAD. Annealing of polyDAD films increase conductivity, indicating better ordering of the molecules upon heating. Rectifying devices were fabricated from polyDAD, and preliminary results are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructure, thermal stability and hardness of ultra-fine grained (UFG) Ni produced by 12 passes of equal channel angular pressing (ECAP) through the route Bc were studied. Comparing the microstructure and hardness of the as-ECAPed samples with the published data on UFG Ni obtained after 8 passes of ECAP through the route Bc reveals a smaller average grain size (230 nm in the present case compared with 270 nm in 8-pass Ni), significantly lower dislocation density (1.08 x 10(14) m(-2) compared with 9 x 10(14) m(-2) in 8-pass Ni) and lower hardness (2 GPa compared with 2.45 GPa for 8-pass Ni). Study of the thermal stability of the 12-pass UFG Ni revealed that recovery is dominant in the temperature range 150-250A degrees C and recrystallisation occurred at temperatures > 250 A degrees C. The UFG microstructure is relatively stable up to about 400 A degrees C. Due to the lower dislocation density and consequently a lower stored energy, the recrystallisation of 12-pass ECAP Ni occurred at a higher temperature (similar to 250 A degrees C) compared with the 8-pass Ni (similar to 200 A degrees C). In the 12-pass Nickel, hardness variation shows that its dependence on grain size is inversely linear rather than the common grain size(-0.5) dependence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal oxidative polymerization of alpha-methylstyrene (AMS) has been studied at various temperatures(45-70 degrees C) and pressures (50-400 psi). Due to its high electron dense double bond, it undergoes thermal oxidative polymerization even at low temperatures fairly easily. The major products are poly(alpha-methylstyrene peroxide) (PMSP), and its decomposition products are acetophenone and formaldehyde. Above 45 degrees C the rate of polymerization increases sharply at a particular instant showing an ''autoacceleration'' with the formation of a knee point. The ''autoacceleration'' is supported from the fact that the plot, of R-p vs T shows a rapid rise, and the plot of ln R-p vs 1/T is non-Arrhenius. The occurrence of autoacceleration is explained on the basis of acetophenone-induced cleavage of PMSP during polymerization, generating more initiating alkoxy radicals, which subsequently leads to the rapid rise in the rate of polymerization. The mechanism of autoacceleration is supported by the change in. order, activation energy, and activation volume before and after the knee point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer degradation in solution has several advantages over melt pyrolysis, The degradation of low-density polyethylene (LDPE) occurs at much lower temperatures in solution (280-360degreesC) than in conventional melt pyrolysis (400-450degreesC). The thermal degradation kinetics of LDPE in solution was investigated in this work. LDPE was dissolved in liquid paraffin and degraded for 3 h at various temperatures (280-360degreesC). Samples were taken at specific times and analyzed with high-pressure liquid chromatography/gel permeation chromatography for the molecular weight distribution (MWD), The time evolution of the MWD was modeled with continuous distribution kinetics. Data indicated that LDPE followed random-chain-scission degradation. The rapid initial drop in molecular weight, observed up to 45 min, was attributed to the presence of weak links in the polymer. The rate coefficients for the breakage of weak and strong links were determined, and the corresponding average activation energies were calculated to be 88 and 24 kJ/mol, respectively. (C) 2002 John Wiley Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure, thermal expansion and electrical conductivity of strontium-doped neodymium ferrite (Nd1-xSrxFeO3-delta where 0less than or equal toxless than or equal to0.4) were investigated. All compositions had the GdFeO3-type orthorhombic perovskite structure. The lattice parameters were determined at room temperature by X-ray powder diffraction. The orthorhombic distortion decreases with increasing Sr substitution. The pseudocubic lattice parameter shows a minimum at x=0.3. The thermal expansion curves for x=0.2-0.4 displayed rapid increase in slope at higher temperatures. The electrical conductivity increased with Sr content and temperature. The calculated activation energies for electrical conduction decreased with increasing x. The electrical conductivity can be described by the small polaron hopping mechanism. The charge compensation for divalent ion on the A-site is provided by the formation of Fe4+ ions on the B site and vacancies on the oxygen sublattice. The results indicate two defect domains: for low values of x, the predominant defect is Fe4+ ions, whereas for higher values of x, oxygen vacancies dominate. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure, thermal expansion and electrical conductivity of the solid solution Nd0.7Sr0.3Fe1-xCoxO3 for 0 less than or equal to x less than or equal to 0.8 were investigated. All compositions had the GdFeO3-type orthorhombic perovskite structure. The lattice parameters were determined at room temperature by X-ray powder diffraction (XRPD). The pseudo-cubic lattice constant decreased continuously with x. The average linear thermal expansion coefficient (TEC) in the temperature range from 573 to 973 K was found to increase with x. The thermal expansion curves for all values of x displayed rapid increase in slope at high temperatures. The electrical conductivity increased with x for the entire temperature range of measurement. The calculated activation energy values indicate that electrical conduction takes place primarily by the small polaron hopping mechanism. The charge compensation for the divalent ion on the A-site is provided by the formation of Fe4+ ions on the B-site (in preference to Co4+ ions) and vacancies on the oxygen sublattice for low values of x. The large increase in the conductivity with x in the range from 0.6 to 0.8 is attributed to the substitution of Fe4+ ions by Co4+ ions. The Fe site has a lower small polaron site energy than Co and hence behaves like a carrier trap, thereby drastically reducing the conductivity. The non-linear behaviour in the dependence of log sigmaT with reciprocal temperature can be attributed to the generation of additional charge carriers with increasing temperature by the charge disproportionation of Co3+ ions. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoembedded aluminum alloys with bimetallic dispersoids of Sn and Pb of compositions Sn-82-Pb-18,Pb- Sn-64-Pb-36, and Sn-54-Pb-46 were synthesized by rapid solidification. The two phases, face-centered-cubic Pb and tetragonal Sn solid-solution, coexist in all the particles. The crystallographic relation between the two phases and the matrix depends upon the solidification pathways adopted by the particles. For Al-(Sn-82-Pb-18), we report a new orientation relation given by [011]Al//[010]Sn and (011)Al//(101)Sn. Pb exhibits a cube-on-cube orientation with Al in few particles, while in others no orientation relationship could be observed. In contrast, Pb in Sn-64-Pb-36 and Sn-54-Pb-46 particles always exhibits cube-on-cube orientation with the matrix. Sn does not show any orientation relationship with Al or Pb in these cases. Differential scanning calorimetry studies revealed melting at eutectic temperature for all compositions, although solidification pathways are different. Attempts were made to correlate these with the melting and heterogeneous nucleation. characteristics.