999 resultados para pulpal response
Resumo:
Purpose The purpose of this investigation was to assess the angular dependence of a commercial optically stimulated luminescence dosimeter (OSLD) dosimetry system in MV x-ray beams at depths beyondd max and to find ways to mitigate this dependence for measurements in phantoms. Methods Two special holders were designed which allow a dosimeter to be rotated around the center of its sensitive volume. The dosimeter's sensitive volume is a disk, 5 mm in diameter and 0.2 mm thick. The first holder rotates the disk in the traditional way. It positions the disk perpendicular to the beam (gantry pointing to the floor) in the initial position (0°). When the holder is rotated the angle of the disk towards the beam increases until the disk is parallel with the beam (“edge on,” 90°). This is referred to as Setup 1. The second holder offers a new, alternative measurement position. It positions the disk parallel to the beam for all angles while rotating around its center (Setup 2). Measurements with five to ten dosimeters per point were carried out for 6 MV at 3 and 10 cm depth. Monte Carlo simulations using GEANT4 were performed to simulate the response of the active detector material for several angles. Detector and housing were simulated in detail based on microCT data and communications with the manufacturer. Various material compositions and an all-water geometry were considered. Results For the traditional Setup 1 the response of the OSLD dropped on average by 1.4% ± 0.7% (measurement) and 2.1% ± 0.3% (Monte Carlo simulation) for the 90° orientation compared to 0°. Monte Carlo simulations also showed a strong dependence of the effect on the composition of the sensitive layer. Assuming the layer to completely consist of the active material (Al2O3) results in a 7% drop in response for 90° compared to 0°. Assuming the layer to be completely water, results in a flat response within the simulation uncertainty of about 1%. For the new Setup 2, measurements and Monte Carlo simulations found the angular dependence of the dosimeter to be below 1% and within the measurement uncertainty. Conclusions The dosimeter system exhibits a small angular dependence of approximately 2% which needs to be considered for measurements involving other than normal incident beams angles. This applies in particular to clinicalin vivo measurements where the orientation of the dosimeter is dictated by clinical circumstances and cannot be optimized as otherwise suggested here. When measuring in a phantom, the proposed new setup should be considered. It changes the orientation of the dosimeter so that a coplanar beam arrangement always hits the disk shaped detector material from the thin side and thereby reduces the angular dependence of the response to within the measurement uncertainty of about 1%. This improvement makes the dosimeter more attractive for clinical measurements with multiple coplanar beams in phantoms, as the overall measurement uncertainty is reduced. Similarly, phantom based postal audits can transition from the traditional TLD to the more accurate and convenient OSLD.
Resumo:
Rind and Tromovitch (2007) raised four concerns relating to our article (Najman, Dunne, Purdie, Boyle, & Coxeter, 2005. Archives of Sexual Behavior, 34, 517-526.) which suggested a causal association between childhood sexual abuse (CSA) and adult sexual dysfunction. We consider each of these concerns: magnitude of effect, cause and effect, confounding, and measurement error. We suggest that, while the concerns they raise represent legitimate reservations about the validity of our findings, on balance the available evidence indicates an association between CSA and sexual dysfunction that is of "moderate" magnitude, probably causal, and unlikely to be a consequence of confounding or measurement error.
Identifying relevant information for emergency services from twitter in response to natural disaster
Resumo:
This project proposes a framework that identifies high‐value disaster-based information from social media to facilitate key decision-making processes during natural disasters. At present it is very difficult to differentiate between information that has a high degree of disaster relevance and information that has a low degree of disaster relevance. By digitally harvesting and categorising social media conversation streams automatically, this framework identifies highly disaster-relevant information that can be used by emergency services for intelligence gathering and decision-making.
Resumo:
Public submission # 029 to a Australian federal parliamentary committee considering proposed legislative changes to the Commonwealth's Healthcare Identifiers Act 2010 and the Personally Controlled Electronic Health Records Act 2012.
Resumo:
Finite element analysis (FEA) models of uniaxial loading of pumpkin peel and flesh tissues were developed and validated using experimental results. The tensile model was developed for both linear elastic and plastic material models, the compression model was develop d only with the plastic material model. The outcomes of force versus time curves obtained from FEA models followed similar pattern to the experimental curves however the curve resulted with linear elastic material properties had a higher difference with the experimental curves. The values of predicted forces were determined and compared with the experimental curve. An error indicator was introduced and computed for each case and compared. Additionally Root Mean Square Error (RMSE) values were also calculated for each model and compared. The results of modelling were used to develop material model for peel and flesh tissues in FEA modelling of mechanical peeling of tough skinned vegetables.
Resumo:
Metformin is the most commonly used pharmacological therapy for type 2 diabetes. We report a genome-wide association study for glycemic response to metformin in 1,024 Scottish individuals with type 2 diabetes with replication in two cohorts including 1,783 Scottish individuals and 1,113 individuals from the UK Prospective Diabetes Study. In a combined meta-analysis, we identified a SNP, rs11212617, associated with treatment success (n = 3,920, P = 2.9 P×-9, odds ratio = 1.35, 95% CI 1.22-1.49) at a locus containing ATM, the ataxia telangiectasia mutated gene. In a rat hepatoma cell line, inhibition of ATM with KU-55933 attenuated the phosphorylation and activation of AMP-activated protein kinase in response to metformin. We conclude that ATM, a gene known to be involved in DNA repair and cell cycle control, plays a role in the effect of metformin upstream of AMP-activated protein kinase, and variation in this gene alters glycemic response to metformin. © 2011 Nature America, Inc. All rights reserved.
Resumo:
The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16 m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.
Resumo:
DNA obtained from a human sputum isolate of Mycobacterium tuberculosis, NTI-64719, which showed extensive dissemination in the guinea pig model resulting in a high score for virulence was used to construct an expression library in the lambda ZAP vector. The size of DNA inserts in the library ranged from 1 to 3 kb, and recombinants represented 60% of the total plaques obtained. When probed with pooled serum from chronically infected tuberculosis patients, the library yielded 176 recombinants with a range of signal intensities. Among these, 93 recombinants were classified into 12 groups on the basis of DNA hybridization experiments, The polypeptides synthesized by the recombinants were predominantly LacZ fusion proteins, Serum obtained from patients who were clinically diagnosed to be in the early phase of M. tuberculosis infection was used to probe the 176 recombinants obtained. interestingly, some recombinants that gave very strong signals in the original screen did not react with early-phase serum; conversely, others whose signals were extremely weak in the original screen gave very intense signals with serum from recently infected patients, This indicates the differential nature of either the expression of these antigens or the immune response elicited by them as a function of disease progression.
Resumo:
A beam-column resting on continuous Winkler foundation and discrete elastic supports is considered. The beam-column is of variable cross-section and the variation of sectional properties along the axis of the beam-column is deterministic. Young's modulus, mass per unit length and distributed axial loadings of the beam-column have a stochastic distribution. The foundation stiffness coefficient of the Winkler model, the stiffnesses of discrete elastic supports, stiffnesses of end springs and the end thrust, are all considered as random parameters. The material property fluctuations and distributed axial loadings are considered to constitute independent, one-dimension uni-variate homogeneous real stochastic fields in space. The foundation stiffness coefficient, stiffnesses of the discrete elastic supports, stiffnesses of end springs and the end thrust are considered to constitute independent random variables. Static response, free vibration and stability behaviour of the beam-column are studied. Hamilton's principle is used to formulate the problem using stochastic FEM. Sensitivity vectors of the response and stability parameters are evaluated. Using these statistics of free vibration frequencies, mode shapes, buckling parameters, etc., are evaluated. A numerical example is given.
Resumo:
Purpose The post-illumination pupil response (PIPR) has been quantified using four metrics, but the spectral sensitivity of only one is known; here we determine the other three. To optimize the human PIPR measurement, we determine the protocol producing the largest PIPR, the duration of the PIPR, and the metric(s) with the lowest coefficient of variation. Methods The consensual pupil light reflex (PLR) was measured with a Maxwellian view pupillometer. - Experiment 1: Spectral sensitivity of four PIPR metrics [plateau, 6 s, area under curve (AUC) early and late recovery] was determined from a criterion PIPR to a 1s pulse and fitted with Vitamin A1 nomogram (λmax = 482nm). - Experiment 2: The PLR was measured as a function of three stimulus durations (1s, 10s, 30s), five irradiances spanning low to high melanopsin excitation levels (retinal irradiance: 9.8 to 14.8 log quanta.cm-2.s-1), and two wavelengths, one with high (465nm) and one with low (637nm) melanopsin excitation. Intra and inter-individual coefficients of variation (CV) were calculated. Results The melanopsin (opn4) photopigment nomogram adequately describes the spectral sensitivity of all four PIPR metrics. The PIPR amplitude was largest with 1s short wavelength pulses (≥ 12.8 log quanta.cm-2.s-1). The plateau and 6s PIPR showed the least intra and inter-individual CV (≤ 0.2). The maximum duration of the sustained PIPR was 83.0±48.0s (mean±SD) for 1s pulses and 180.1±106.2s for 30s pulses (465nm; 14.8 log quanta.cm-2.s-1). Conclusions All current PIPR metrics provide a direct measure of the intrinsic melanopsin photoresponse. To measure progressive changes in melanopsin function in disease, we recommend that the PIPR be measured using short duration pulses (e.g., ≤ 1s) with high melanopsin excitation and analyzed with plateau and/or 6s metrics. Our PIPR duration data provide a baseline for the selection of inter-stimulus intervals between consecutive pupil testing sequences.
Resumo:
Purpose To determine whether melanopsin expressing intrinsically photosensitive Retinal Ganglion Cell (ipRGC) inputs to the pupil light reflex (PLR) are affected in early age-related macular degeneration (AMD). Methods The PLR was measured in 40 participants (20 early AMD and 20 age-matched controls) using a custom-built Maxwellian-view pupillometer. Sinusoidal stimuli (0.5 Hz, 11.9 s duration, 35.6° diameter) were presented to the study eye and the consensual pupil response was measured for stimuli with high melanopsin excitation (464nm; blue) and with low melanopsin excitation (638 nm; red) that biased activation to the outer retina. Two melanopsin PLR metrics were quantified: the Phase Amplitude Percentage (PAP) during the sinusoidal stimulus presentation and the Post-Illumination Pupil Response (PIPR). The PLR during stimulus presentation was analyzed using latency to constriction, transient pupil response and maximum pupil constriction metrics. Diagnostic accuracy was evaluated using receiver operating characteristic (ROC) curves. Results The blue PIPR was significantly less sustained in the early AMD group (p<0.001). The red PIPR was not significantly different between groups (p>0.05). The PAP and blue stimulus constriction amplitude were significantly lower in the early AMD group (p < 0.05). There was no significant difference between groups in the latency or transient amplitude for both stimuli (p>0.05). ROC analysis showed excellent diagnostic accuracy for the blue PIPR metrics (AUC>0.9). Conclusions This is the initial report that the melanopsin controlled PIPR is dysfunctional in early AMD. The non-invasive, objective measurement of the ipRGC controlled PIPR has excellent diagnostic accuracy for early AMD.
Resumo:
Melanopsin containing intrinsically photosensitive Retinal Ganglion cells (ipRGCs) mediate the pupil light reflex (PLR) during light onset and at light offset (the post-illumination pupil response, PIPR). Recent evidence shows that the PLR and PIPR can provide non-invasive, objective markers of age-related retinal and optic nerve disease, however there is no consensus on the effects of healthy ageing or refractive error on the ipRGC mediated pupil function. Here we isolated melanopsin contributions to the pupil control pathway in 59 human participants with no ocular pathology across a range of ages and refractive errors. We show that there is no effect of age or refractive error on ipRGC inputs to the human pupil control pathway. The stability of the ipRGC mediated pupil response across the human lifespan provides a functional correlate of their robustness observed during ageing in rodent models.
Resumo:
Purpose The post-illumination pupil response (PIPR) has been quantified in the literature by four metrics. The spectral sensitivity of only one metric is known and this study quantifies the other three. To optimize the measurement of the PIPR in humans, we also determine the stimulus protocol producing the largest PIPR, the duration of the PIPR, and the metric(s) with the lowest coefficient of variation. Methods The consensual pupil light reflex (PLR) was measured with a Maxwellian view pupillometer (35.6° diameter stimulus). - Experiment 1: Spectral sensitivity of four PIPR metrics [plateau, 6 s, area under curve (AUC) early and late recovery] was determined from a criterion PIPR (n = 2 participants) to a 1 s pulse at five wavelengths (409-592nm) and fitted with Vitamin A nomogram (ƛmax = 482 nm). - Experiment 2: The PLR was measured in five healthy participants [29 to 42 years (mean = 32.6 years)] as a function of three stimulus durations (1 s, 10 s, 30 s), five irradiances spanning low to high melanopsin excitation levels (retinal irradiance: 9.8 to 14.8 log quanta.cm-2.s-1), and two wavelengths, one with high (465 nm) and one with low (637 nm) melanopsin excitation. Intra and inter-individual coefficients of variation (CV) were calculated. Results The melanopsin (opn4) photopigment nomogram adequately described the spectral sensitivity derived from all four PIPR metrics. The largest PIPR amplitude was observed with 1 s short wavelength pulses (retinal irradiance ≥ 12.8 log quanta.cm-2.s-1). Of the 4 PIPR metrics, the plateau and 6 s PIPR showed the least intra and inter-individual CV (≤ 0.2). The maximum duration of the sustained PIPR was 83.4 ± 48.0 s (mean ± SD) for 1 s pulses and 180.1 ± 106.2 s for 30 s pulses (465 nm; 14.8 log quanta.cm-2.s-1). Conclusions All current PIPR metrics provide a direct measure of intrinsic melanopsin retinal ganglion cell function. To measure progressive changes in melanopsin function in disease, we recommend that the intrinsic melanopsin response should be measured using a 1 s pulse with high melanopsin excitation and the PIPR should be analyzed with the plateau and/or 6 s metrics. That the PIPR can have a sustained constriction for as long as 3 minutes, our PIPR duration data provide a baseline for the selection of inter-stimulus intervals between consecutive pupil testing sequences.
Resumo:
The purpose of this article is to show the applicability and benefits of the techniques of design of experiments as an optimization tool for discrete simulation models. The simulated systems are computational representations of real-life systems; its characteristics include a constant evolution that follows the occurrence of discrete events along the time. In this study, a production system, designed with the business philosophy JIT (Just in Time) is used, which seeks to achieve excellence in organizations through waste reduction in all the operational aspects. The most typical tool of JIT systems is the KANBAN production control that seeks to synchronize demand with flow of materials, minimize work in process, and define production metrics. Using experimental design techniques for stochastic optimization, the impact of the operational factors on the efficiency of the KANBAN / CONWIP simulation model is analyzed. The results show the effectiveness of the integration of experimental design techniques and discrete simulation models in the calculation of the operational parameters. Furthermore, the reliability of the methodologies found was improved with a new statistical consideration.