998 resultados para proton conductive electrolytes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite polymeric electrolytes of PEO-LiClO4-Al2O3 and PEO-LiClO4-EC were prepared and the ionic conductivity by a.c. impedance was calculated using four different methods, and three kinds of representations of a.c. impedance spectra were adopted. The first is based on the Nyquist impedance plot of the imaginary part (Z") versus the real part (Z') of the complex impedance. The second and the third correspond to the plots of imaginary impedance Z" as a function of frequency (f), and the absolute value (\Z\) and phase angle (theta) as a function of f, respectively. It was found that the values of the ionic conductivity calculated using the three representations of a.c. impedance spectra are basically identical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facilitated proton transfer across the water/1,2-dichloroethane (DCE) interface supported on the tips of micro- and nano-pipets by o-phenanthroline (Phen) was studied by using cyclic voltammetry. The formed micro- and nano-liquid/liquid interfaces functioned as micro- and nano-electrodes under certain experimental conditions. The dependence of the half-wave potentials on the aqueous solutions acidities was studied and the ratio of association constants between Phen and proton in the aqueous and DCE phases was calculated by the method proposed by Matsuda et al.. The standard rate constant (k(0)) and the transfer coefficient (alpha) evaluated by using nano-pipets were equal to 0.183 +/- 0.054 cm/s and 0.70 +/- 0.09, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline (PANI), a member of the intrinsically conducting polymer (ICPs) family, was blended with polyamide-11 (polyco-aminoundecanoyle) in concentrated sulfuric acid. The above solution was used to spin conductive PANI/polyamide-11 fibers by wet-spinning technology. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to study the two-phase morphology of the conductive PANI/polyamide-11 fibers. The micrographs of the cross-section, the axial section and the surface of the monofilament demonstrated that the two blend components were incompatible. The morphology of PANI in the fibers was of fibrillar form, which was valuable for producing conducting channels. The electrical conductivity of the fibers was from 10(-6) to 10(-1) S/cm with the different PANI fraction and the percolation threshold was about 5 wt.%. By comparing the two blend systems of PANI/Polyamide-11 fibers and carbon black filled poly(ethylene terephthalate) (PET) fibers, it was shown that the morphology of the conductive component had an influence on electrical conductivity, The former had higher conductivity and lower percolation threshold than the latter. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hybrid material with a conductive organic network in an inorganic matrix has been prepared by in-situ hydrolysis/polycondensation of TEOS in an aqueous solution of a solubilized polyaniline. Due to intense hydrogen bonding (indicated by Si-29 NMR and FTIR) the conductive polymer is very well dispersed in the silica matrix. The Figure shows SEM images of a 46/54 wt.-% hybrid at two temperatures (left 20 degreesC, right 100 degreesC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manganous hexacyanoferrate (MnHCF) supported on graphite powder was dispersed into methyltrimethoxysilane-derived gels to yield a conductive composite, which was used as electrode material to construct a renewable three-dimensional MnHCF-modifed electrode. MnHCF acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. Cyclic voltammetry was exploited to investigate the dependence of electrochemical behavior on supporting electrolytes containing various cations. The chemically modified electrode can electrocatalytically oxidize L-cysteine, and exhibits a distinct advantage of polishing in the event of surface fouling, as well as simple preparation, good chemical and mechanical stability, and good repeatability of surface renewal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic absorption coefficients for ethylamine in heavy water (D2O) and in light water (H2O) have been measured in the frequency range from 0.8 to 220 MHz at 25 degrees C. A single relaxational process has been observed in these two kinds of solutions. From the concentration dependence of the ultrasonic relaxation parameters, and following the reaction mechanism proposed by Eigen et al. for ethylamine in H2O, the causes of the relaxations have been attributed to a perturbation of an equilibrium associated with a deuteron or proton transfer reaction. The rate and equilibrium constants have been estimated from deuterioxide or hydroxide ion concentration dependence of the relaxation frequency, and the kinetic isotope effects have been determined. In addition, the standard volume changes of the reactions have been calculated from the concentration dependence of the maximum absorption per wavelength, and the adiabatic compressibility has also been determined from the density and sound velocity for ethylamine in D2O and in H2O, respectively. These results are compared with those for propylamine and butylamine and are discussed in relation to the different kinetic properties between D2O and H2O, the reaction radii derived by Debye theory, and the structural properties of the reaction intermediate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic absorption coefficients were measured for butylamine in heavy water (D2O) in the frequency range from 0.8 to 220 MHz and at concentrations from 0.0278 to 2.5170 mol dm(-3) at 25 degrees C; two kinds of relaxation processes were observed. One was found in relatively dilute solutions (up to 0.5 mol dm(-3)), which was attributed to the hydrolysis of butylamine. In order to compare the results, absorption measurements were also carried out in light water (H2O). The rate and thermodynamic parameters were determined from the concentration dependence of the relaxation frequency and the maximum absorption per wavelength. The isotope effects on the diffusion-controlled reaction were estimated and the stability of the intermediate of the hydrolysis was considered while comparing it with the results for propylamine in H2O and D2O. Another relaxation process was observed at concentrations greater than 1 mol dm(-3) in D2O. In order to examine the solution characteristics, proton NMR measurements for butylamine were also carried out in D2O. The chemical shifts for the gamma- and delta-proton in butylamine molecule indicate the existence of an aggregate. From profiles of the concentration dependence of the relaxation frequency and the maximum absorption per wavelength of sound absorption, the source of the relaxation was attributed to an association-dissociation reaction, perhaps, associated with a hydrophobic interaction. The aggregation number, the forward and reverse rate constants and the standard volume change of the reaction were determined. It was concluded from a comparison with the results in H2O that the hydrophobic interaction of butylamine in D2O is stronger than that in H2O. Also, the isotope effect on this reaction was interpreted in terms of the solvent structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conductive fibers were obtained by blending polyaniline with poly-omega-aminoundecanoyle in-concentrated H2SO4 Micro-fiber caused by non-compatibility between the two polymers was valuable for improving conductive property of the fibers. Abnormal effect on the crystallinity of polyaniline and poly-omega-aminoundecanoyle upon drawing stress was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solid electrolytes, BaCe(0.8)Ln(0.2)O(2.9) (Ln: Gd, Sm, Eu), were prepared by the sol-gel method. XRD indicated that a pure orthorhombic phase was formed at 900 degrees C. The synthesis temperature by the sol-gel method was about 600 degrees C: lower than the high temperature solid phase reaction method. The electrical conductivity and impedance spectra were measured and the conduction mechanism was studied. The grain-boundary resistance of the solid electrolyte could be reduced or eliminated by the sol-gel method. The conductivity of BaCe0.8Gd0.2O2.9 is 7.87 x 10(-2) S.cm(-1) at 800 degrees C. The open-circuit voltage of hydrogen-oxygen fuel cell using BaCe0.8Gd0.2O2.9 as electrolyte was near to 1 V and its maximum power density was 30 mW.cm(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of solid electrolytes (Ce0.8RE0.2)(1-x)MxO2-delta(RE: Rare earth, M: Alkali earth) were prepared by sol-gel methods. XRD indicated that a pure fluorite phase was formed at 800 degrees C. The synthesis temperature by the sol-gel methods was about 700 degrees C lower than by the traditional ceramic method. The electrical conductivity and impedance spectra were measured. XPS showed that the oxygen vacancy increased obviously by doping MO, thus, resulting in the increase of the oxygen ionic transport number and conductivity. The performance of ceria-based solid electrolyte was improved. The effects of RE2O3 and MO on the electrical properties were discussed. The conductivity and the oxygen ionic transport number of (Ce0.8Sm0.2)(1-0.05)Ca0.05O2-delta is 0.126 S.cm(-1) and 0.99 at 800 degrees C, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a microelectrode voltammetric determination of heterogeneous electron transfer rate constants (k(s)) and diffusion coefficients (D) of 7,7,8',8 '-tetracyanoquinodimethane (TCNQ) in polyelectrolytes. The diffusion coefficients are estimated using cyclic voltammetry under linear diffusion conditions, and the heterogeneous electron transfer rate constants are obtained under mixed linear and radial diffusion in the polyelectrolyte. k(s) and D increase with increasing temperature, and the activation barriers of the electrode reaction for reduction of TCNQ are obtained. On the other hand, the dependencies of D and k(s) of TCNQ on the size and charge of the counterion are compared in the polyelectrolyte. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of lanthanum ions on the structural and conformational change of yeast tRNA(Phe) was studied by H-1 NMR. The results suggest that the tertiary base pair (G-15)(C-48), which was located in the terminal in the augmented dihydrouridine helix (D-helix), was markedly affected by adding La3+ and shifted 0.33 downfield. Based pair (U-8)(A-14), which is associated with a tertiary interaction, links the base of the acceptor stem to the D-stem and anchors the elbow of the L structure, shifted 0.20 upfield. Another imino proton that may be affected by La3+ in tRNA(Phe) is the tertiary base pair (G-19)(C-56). The assignment of this resonance is tentative since it is located in the region of highly overlapping resonances between 12.6 and 12.2. This base pair helps to anchor the D-loop to the T psi C loop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A conducting layer with the conductivity of 1.2 Omega(-1)cm(-1) stripped in a solvent from KrF-laser-irradiated polyimide thin film is taken as a sample to determine the microstructure of the conducting layer. Fourier-transform infrared and X-ray photoelectron spectroscopies show the formation of the carbon-rich clusters after irradiation. The element analysis gives the atomic ratio of C:H:N:O for the carbon-rich cluster as 60:20:3:1. Wide-angle X-ray diffraction indicates that the conducting layer is mainly amorphous carbon with a small amount of the short-range ordered carbon-rich clusters. This study suggests a structural model with three-layer carbon sheets linked together in a random fashion for the short-range ordered carbon-rich clusters. The interplanar spacing is 3.87 Angstrom and the layer diameter 25 Angstrom. The transport model of variable-range hopping in three dimensions is used to explain the conducting behavior of the conducting layer. In our case, the short-range ordered carbon-rich clusters are assumed to be conducting islands dispersed in the amorphous carbon-rich cluster matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron impact mass spectrum (EIMS) of 3-phenyl-1-butyn-3-ol was reported in this paper. Collision-induced dissociation (CID) was used to study the gas phase ion structure of [C8H7](+) formed by the fragmentation of ionized 3-phenyl-1-butyn-3-ol, and that it has the same structure as m/z 103 ions generated by cinnamic acid and alpha-methylstyrene. Deuterium labelling, metastable ion (MI) and CID experimental results indicate the formation of m/z 103 ion resulting from molecular ion of 3-phenyl-1-butyn-3-ol, which is a stepwise procedure via twice proton transfers, rather than concerted process during the successive elimination of methyl radical and neutral carbon monoxide accompanying hydrogen transfer. Moreover, in order to rationalized these fragmentation processes, the bimolecular proton bound complex between benzyne and acetylene intermediate has been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical behavior of the transfer of H+ across polypyrrole membrane (PPM) was studied. The transfer process was quasi-reversible and mainly diffusion-controlled. PPM electropolymerized in water solution has better reversibility than that in CH3CN solution for the transfer of H+. The transfer process of H+ across the two kinds of PPM indicated that the PPM electrochemically polymerized was of asymmetry.