925 resultados para protein, semiconductor, solar energy
Resumo:
The growing need for food is something that worries the world, which has a population that is growing at a geometric progression while their resources grows at an arithmetic progression. To alleviate this problem there are some proposals, including increased food production or reduce waste thereof. Many studies have been conducted in the world in order to reduce food waste that can reach 40% of production, depending on the region. For this purpose techniques are used to retard degradation of foods, including drying. This paper presents a design of a hybrid fruit dryer that uses solar energy and electric energy with automation of the process. To accomplish drying tests were chosen Typical fruits with good acceptability as processed fruits. During the experiments were measured temperature values at different points. Were also measured humidity values, solar radiation and mass. A data acquisition system was built using a Arduino for obtaining temperatures. The data were sent to a program named Secador de Frutas, done in this work, to plot the same. The volume of the drying chamber was 423 liters and despite the unusual size test using mirrors to increase the incidence of direct radiation, showed that the drier is competitive when compared with other solar dryers produced in Hydraulic Machines and Solar Energy Laboratory (LMHES ) UFRN. The drier has been built at a cost of 3 to 5 times smaller than industrial dryers that operate with the same load of fruit. And the energy cost to produce dried fruits was more feasible compared with such dryers that use LPG as an energy source. However, the drying time was longer.
Resumo:
It presents a solar oven manufactured from MDF boards intended for the baking of foods such as pizza, cakes, breads, hamburgers and the like. They will be given the manufacturing processes and assembly of such an oven which has features of low cost manufacturing. The main feature of the proposed furnace and can be transported to any locations because it is seated on a device for carrying case / backpack. Tests will be conducted for the baking of various foods and their results will be compared with the various types of existing solar ovens shown by the literature. They will analyze the thermal and economic feasibility of such an oven that can provide socialization of the use of solar energy for poor communities and can become a source of generation of employment and income. The proposed solar oven baking has capacity for two foods and can be manufactured to allow multiple simultaneous baking of food.
Resumo:
Solar energy presents itself as an excellent alternative for the generation of clean, renewable energy. This work aims to identify technological trends of photovoltaic cells for solar energy. The research is characterized, in relation to nature, to be applied; regarding the approach is qualitative and quantitative; with respect to the objectives, it is exploratory and descriptive; concerning the methodological procedure is considered a bibliographic research with a case study in the case of solar photovoltaic sector. The development of this research began with a literature review on photovoltaic solar energy and technology foresight. Then it led to the technology mapping of photovoltaic solar cells through the analysis of articles and patents. It was later performed the technological prospecting of photovoltaic cells for solar energy through the Delphi method, as well as the construction of the current plan and future technology of photovoltaic cells for the current scenario, 2020 and 2025. The results of this research show that the considered mature technologies (silicon mono and multicrystalline) will continue to be commercially viable within the prospected period (2020-2025). Other technologies that are currently viable (amorphous silicon, cadmium telluride and copper indium selenide / Copper indium gallium diselenide-), may not submit the same condition in 2025. Since the cells of silicon nanowires, dye-sensitized and based on carbon nanostructure, which nowadays are not commercially viable, may be part of the future map of photovoltaic technologies for solar energy.
Resumo:
The realization of an energy future based on safe, clean, sustainable, and economically viable technologies is one of the grand challenges facing modern society. Electrochemical energy technologies underpin the potential success of this effort to divert energy sources away from fossil fuels, whether one considers alternative energy conversion strategies through photoelectrochemical (PEC) production of chemical fuels or fuel cells run with sustainable hydrogen, or energy storage strategies, such as in batteries and supercapacitors. This dissertation builds on recent advances in nanomaterials design, synthesis, and characterization to develop novel electrodes that can electrochemically convert and store energy.
Chapter 2 of this dissertation focuses on refining the properties of TiO2-based PEC water-splitting photoanodes used for the direct electrochemical conversion of solar energy into hydrogen fuel. The approach utilized atomic layer deposition (ALD); a growth process uniquely suited for the conformal and uniform deposition of thin films with angstrom-level thickness precision. ALD’s thickness control enabled a better understanding of how the effects of nitrogen doping via NH3 annealing treatments, used to reduce TiO2’s bandgap, can have a strong dependence on TiO2’s thickness and crystalline quality. In addition, it was found that some of the negative effects on the PEC performance typically associated with N-doped TiO2 could be mitigated if the NH3-annealing was directly preceded by an air-annealing step, especially for ultrathin (i.e., < 10 nm) TiO2 films. ALD was also used to conformally coat an ultraporous conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold with an ultrathin layer of TiO2. The integration of these ultrathin films and the oxide nanoparticles resulted in a heteronanostructure design with excellent PEC water oxidation photocurrents (0.7 mA/cm2 at 0 V vs. Ag/AgCl) and charge transfer efficiency.
In Chapter 3, two innovative nanoarchitectures were engineered in order to enhance the pseudocapacitive energy storage of next generation supercapacitor electrodes. The morphology and quantity of MnO2 electrodeposits was controlled by adjusting the density of graphene foliates on a novel graphenated carbon nanotube (g-CNT) scaffold. This control enabled the nanocomposite supercapacitor electrode to reach a capacitance of 640 F/g, under MnO2 specific mass loading conditions (2.3 mg/cm2) that are higher than previously reported. In the second engineered nanoarchitecture, the electrochemical energy storage properties of a transparent electrode based on a network of solution-processed Cu/Ni cores/shell nanowires (NWs) were activated by electrochemically converting the Ni metal shell into Ni(OH)2. Furthermore, an adjustment of the molar percentage of Ni plated onto the Cu NWs was found to result in a tradeoff between capacitance, transmittance, and stability of the resulting nickel hydroxide-based electrode. The nominal area capacitance and power performance results obtained for this Cu/Ni(OH)2 transparent electrode demonstrates that it has significant potential as a hybrid supercapacitor electrode for integration into cutting edge flexible and transparent electronic devices.
Resumo:
This dissertation studies capacity investments in energy sources, with a focus on renewable technologies, such as solar and wind energy. We develop analytical models to provide insights for policymakers and use real data from the state of Texas to corroborate our findings.
We first take a strategic perspective and focus on electricity pricing policies. Specifically, we investigate the capacity investments of a utility firm in renewable and conventional energy sources under flat and peak pricing policies. We consider generation patterns and intermittency of solar and wind energy in relation to the electricity demand throughout a day. We find that flat pricing leads to a higher investment level for solar energy and it can still lead to more investments in wind energy if considerable amount of wind energy is generated throughout the day.
In the second essay, we complement the first one by focusing on the problem of matching supply with demand in every operating period (e.g., every five minutes) from the perspective of a utility firm. We study the interaction between renewable and conventional sources with different levels of operational flexibility, i.e., the possibility
of quickly ramping energy output up or down. We show that operational flexibility determines these interactions: renewable and inflexible sources (e.g., nuclear energy) are substitutes, whereas renewable and flexible sources (e.g., natural gas) are complements.
In the final essay, rather than the capacity investments of the utility firms, we focus on the capacity investments of households in rooftop solar panels. We investigate whether or not these investments may cause a utility death spiral effect, which is a vicious circle of increased solar adoption and higher electricity prices. We observe that the current rate-of-return regulation may lead to a death spiral for utility firms. We show that one way to reverse the spiral effect is to allow the utility firms to maximize their profits by determining electricity prices.
Resumo:
Ce projet de recherche mené en collaboration industrielle avec St-Jean Photochimie Inc. / PCAS Canada vise le développement et la caractérisation de dérivés dipyrrométhène pour des applications dans le domaine du photovoltaïque. La quête du récoltage des photons se situant dans le proche-infrarouge a été au centre des modifications structurales explorées afin d’augmenter l’efficacité de conversion des cellules solaires de type organique et à pigments photosensibles. Trois familles de composés intégrant le motif dipyrrométhène ont été synthétisées et caractérisées du point de vue spectroscopique, électrochimique, structural ainsi que par modélisation moléculaire afin d’établir des relations structures-propriétés. La première famille comporte six azadipyrrométhènes au potentiel de coordination tétradentate sur des centres métalliques. Le développement d’une nouvelle voie synthétique asymétrique combinée à l’utilisation d’une voie symétrique classique ont permis d’obtenir l’ensemble des combinaisons de substituants possibles sur les aryles proximaux incluant les noyaux 2-hydroxyphényle, 2-méthoxyphényle et 2- pyridyle. La modulation du maximum d’absorption dans le rouge a pu être faite entre 598 et 619 nm. De même, la présence de groupements méthoxyle ou hydroxyle augmente l’absorption dans le violet (~410 nm) tel que démontré par modélisation. La caractérisation électrochimique a montré que les dérivés tétradentates étaient en général moins stables aux processus redox que leur contre-parti bidentate. La deuxième famille comporte dix dérivés BODIPY fusionnés de façon asymétrique en position [b]. L’aryle proximal a été modifié de façon systématique afin de mieux comprendre l’impact des substituents riches en électron et de la fusion de cycles aromatiques. De plus, ces dérivés ont été mis en relation avec une vaste série de composés analogues. Les résultats empiriques ont montré que les propriétés optoélectroniques de la plateforme sont régies par le degré de communication électronique entre l’aryle proximal, le pyrrole sur lequel il est attaché et le noyau indolique adjacent à ce dernier. Les maximums d’absorption dans le rouge sont modulables entre 547 et 628 nm et la fluorescence des composés se situe dans le proche- infrarouge. L’un des composé s’est révélé souhaitable pour une utilisation en photovoltaïque ainsi qu’à titre de sonde à pH. La troisième famille comporte cinq complexes neutres de RuII basés sur des polypyridines et portant un ligand azadipyrrométhène cyclométalé. Les composés ont montré une forte absorption de photons dans la région de 600 à 800 nm (rouge à proche- infrarouge) et qui a pu être étendue au-delà de 1100 nm dans le cas des dérivés portant un ligand terpyridine. L’analyse des propriétés optoélectroniques de façon empirique et théorique a montré un impact significatif de la cyclométalation et ouvert la voie pour leur étude en tant que photosensibilisateurs en OPV et en DSSC. La capacité d’un des complexes à photo-injecter un électron dans la bande de conduction du semi-conducteur TiO2 a été démontré en collaboration avec le groupe du Pr Gerald J. Meyer à University of North Carolina at Chapel Hill, premier pas vers une utilisation dans les cellules solaires à pigments photosensibles. La stabilité des complexes en solution s’est toutefois avérée problématique et des pistes de solutions sont suggérées basées sur les connaissances acquises dans le cadre de cette thèse.
Resumo:
Dye-sensitized solar cell (DSSC) is currently a promising technology that makes solar energy efficient and cost-effective to harness. In DSSC, metal free dyes, such indoline-containing D149 and D205, are proved to be potential alternatives for traditional metal organic dyes. In this work, a DFT/TDDFT characterization for D149 and D205 were carried out using different functionals, including B3LYP, MPW1K, CAM-B3LYP and PBE0. Three different conformers for D149 and four different conformers for D205 were identified and calculated in vacuum. The performance of different functionals on calculating the maximum absorbance of the dyes in vacuum and five common solvents (acetonitrile, chloroform, ethanol, methanol, and THF) were examined and compared to determine the suitable computational setting for predicting properties of these two dyes. Furthermore, deprotonated D149 and D205 in solvents were also considered, and the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were calculated, which elucidates the substitution effect on the rhodanine ring of D149 and D205 dyes on their efficiency. Finally, D149 and D205 molecules were confirmed to be firmly anchored on ZnO surface by periodic DFT calculations. These results would shed light on the design of new highly efficiency metal-free dyes.
Resumo:
Harnessing solar energy to provide for the thermal needs of buildings is one of the most promising solutions to the global energy issue. Exploiting the additional surface area provided by the building’s façade can significantly increase the solar energy output. Developing a range of integrated and adaptable products that do not significantly affect the building’s aesthetics is vital to enabling the building integrated solar thermal market to expand and prosper. This work reviews and evaluates solar thermal facades in terms of the standard collector type, which they are based on, and their component make-up. Daily efficiency models are presented, based on a combination of the Hottel Whillier Bliss model and finite element simulation. Novel and market available solar thermal systems are also reviewed and evaluated using standard evaluation methods, based on experimentally determined parameters ISO 9806. Solar thermal collectors integrated directly into the facade benefit from the additional wall insulation at the back; displaying higher efficiencies then an identical collector offset from the facade. Unglazed solar thermal facades with high capacitance absorbers (e.g. concrete) experience a shift in peak maximum energy yield and display a lower sensitivity to ambient conditions than the traditional metallic based unglazed collectors. Glazed solar thermal facades, used for high temperature applications (domestic hot water), result in overheating of the building’s interior which can be reduced significantly through the inclusion of high quality wall insulation. For low temperature applications (preheating systems), the cheaper unglazed systems offer the most economic solution. The inclusion of brighter colour for the glazing and darker colour for the absorber shows the lowest efficiency reductions (<4%). Novel solar thermal façade solutions include solar collectors integrated into balcony rails, shading devices, louvers, windows or gutters.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
El objeto de la invención es un captador solar constituido por un concentrador cilindroparabólico (CCP) aislado térmicamente (4), una cubierta de vidrio en su plano de apertura (1), un absorbedor tubular situado en su foco por el que circula un fluido caloportador (3), con o sin encapsulamiento de vidrio (2), y un mecanismo de lamas rotativas absorbedoras (5). El invento permite, mediante la rotación de las lamas, optar entre un modo de operación en concentración solar en el absorbedor focal para el aprovechamiento de la radiación solar directa (3) y un modo de operación en placa plana convencional para aprovechamiento de la radiación solar global (6). Su uso se propone como parte de instalaciones solares térmicas con el fin de a) alimentar con un solo elemento procesos que presentan demandas combinadas de baja y media temperatura en función de su programación temporal o estacional, b) permitir un aprovechamiento solar suplementario en instalaciones de CCP durante períodos de radiación directa reducida y c) contar con capacidad adicional de regulación de temperatura y radiación.
Resumo:
Los anuncios de impacto por cambio climático han llevado a los países a crear estrategias de mitigación y adaptación, dentro de las cuales se considera la promoción de generación de electricidad a través de fuentes renovables no convencionales -- El avance logrado ha incentivado a los usuarios del servicio de energía eléctrica a invertir en plantas de generación, eliminando la necesidad parcial de utilizar las redes de transmisión y distribución del sistema eléctrico, de tal forma que las redes eléctricas presentan una holgura gradual en cuanto a la energía que se transporta a través de ellas -- Este artículo presenta un análisis del impacto sobre los ingresos operacionales de una empresa distribuidora de energía por efecto de la entrada de soluciones de energía solar fotovoltaica en el segmento residencial de su área de influencia, encontrando que se generarían diferentes escalas de afectación, con valores de hasta el 3%
Resumo:
As microalgas podem ser consideradas como um dos mais eficientes sistemas biológicos de transformação de energia solar em compostos orgânicos. Quando cultivadas em meios adequados, certas espécies podem duplicar sua biomassa diariamente. Além disso, possuem inúmeras vantagens, como: elevada velocidade de crescimento; potencial para absorver CO2, reduzindo assim a quantidade de emissões deste gás na atmosfera e diminuindo o efeito estufa. O objetivo do trabalho foi estudar o efeito do uso de pentoses no cultivo de Chlorella minutissima, Chlorella vulgaris, Chlorella homosphaera, Dunaliella salina, Spirulina paracas e Synechococcus nidulans, avaliando o perfil cinético do crescimento e a capacidade de produção de carboidratos e proteínas. Para o cultivo das microalgas foram utilizados os meios: Zarrouk, Bristol`S Modificado e DUN. Em todos os meios o componente nitrogenado foi reduzido pela metade e utilizado 1%, 5%, 10%, 20% e 30% de pentoses, com concentrações de xilose e arabinose que representassem as mesmas presentes em caldo hidrolisado do bagaço de cana de açúcar pré-tratado. Os cultivos foram realizados em fotobiorreatores de 2 L, mantidos em estufa a 30 ºC, fotoperíodo de 12h claro/escuro e 2500 Lx, com agitação a uma vazão de 0,75 v.v.m. . O crescimento de biomassa foi monitorado diariamente pela densidade ótica das culturas em espectrofotômetro a 670nm. Foram avaliados parâmetros cinéticos como a concentração máxima de biomassa, produtividade máxima e velocidade específica máxima de crescimento. A determinação do consumo das pentoses foi realizada através da metodologia de Somogy e Nelson, para a determinação de carboidratos foi utilizada uma adaptação do método do ácido 3,5 dinitro salicílico, as proteínas foram quantificadas pelo método de micro-Kjeldahl. Todas as microalgas foram capazes de consumir em no máximo quatro dias as concentrações de pentoses, e logo após esta etapa mixotrófica manter-se em crescimento autotrófico, destacando-se as cepas de Dunaliella salina e Synechococcus nidulans que esgotaram as maiores concentrações utililizadas em dois dias de cultivo. Para as cianobactérias estudadas, Spirulina paracas cultivada com 10% de C5, foi a que obteve os melhores resultados de concentração celular, produtividade e velocidade específica de crescimento máxima, 1,364 g.L-1 , 0,128 g.L-1 .dia-1 e 0,240 dia-1 . Em relação ao efeito na composição da biomassa, Synechococcus nidulans produziu o maior teor de proteínas, 62,9%, nos ensaios com 10% de C5. Já as cepas de Chlorophytas os melhores resultados foram obtidos com o uso de 5% de C5, para os parâmetros cinéticos destacam-se os valores encontrados para Dunaliella salina, onde a maior concentração de biomassa, produtividade e velocidade específica de crescimento foram 1,246 g.L-1 , 0,091 g.L- 1 .dia-1 e 0,379 dia-1 , respectivamente. Chlorella minutissima e Dunaliella salina foram as melhores produtoras de carboidratos, alcançando 58,6%/0,3 g.L-1 e 23,07%/0,29 g.L-1 ,respecivamente. Logo, o uso de pentoses nas microalgas em substituição as fontes tradicionais de carbono, resultou no crescimento das mesmas, o que mostra que estas podem agir como intermediários para a absorção de açúcares de cinco carbonos.
Resumo:
The presented work is related to the use of solar energy for the needs of heating and electricity for a single house located in Poland. Electricity will provided by energy conversion in the turbine by means of Organic Rankine Cycle (ORC), in which the operating medium (water heated in solar collector) is heating refrigerator in the heating exchanger. The solar installation is integrated with heat accumulator and wood boiler, which is used in the situation that collector is not enough to fill requirements of thermal comfort. There are chosen also all the necessary components of the system. In the work is also performed the economic assessment, by F chart method, to evaluate the profitability of the project, taking into total costs and savings.
Resumo:
Ce projet de recherche mené en collaboration industrielle avec St-Jean Photochimie Inc. / PCAS Canada vise le développement et la caractérisation de dérivés dipyrrométhène pour des applications dans le domaine du photovoltaïque. La quête du récoltage des photons se situant dans le proche-infrarouge a été au centre des modifications structurales explorées afin d’augmenter l’efficacité de conversion des cellules solaires de type organique et à pigments photosensibles. Trois familles de composés intégrant le motif dipyrrométhène ont été synthétisées et caractérisées du point de vue spectroscopique, électrochimique, structural ainsi que par modélisation moléculaire afin d’établir des relations structures-propriétés. La première famille comporte six azadipyrrométhènes au potentiel de coordination tétradentate sur des centres métalliques. Le développement d’une nouvelle voie synthétique asymétrique combinée à l’utilisation d’une voie symétrique classique ont permis d’obtenir l’ensemble des combinaisons de substituants possibles sur les aryles proximaux incluant les noyaux 2-hydroxyphényle, 2-méthoxyphényle et 2- pyridyle. La modulation du maximum d’absorption dans le rouge a pu être faite entre 598 et 619 nm. De même, la présence de groupements méthoxyle ou hydroxyle augmente l’absorption dans le violet (~410 nm) tel que démontré par modélisation. La caractérisation électrochimique a montré que les dérivés tétradentates étaient en général moins stables aux processus redox que leur contre-parti bidentate. La deuxième famille comporte dix dérivés BODIPY fusionnés de façon asymétrique en position [b]. L’aryle proximal a été modifié de façon systématique afin de mieux comprendre l’impact des substituents riches en électron et de la fusion de cycles aromatiques. De plus, ces dérivés ont été mis en relation avec une vaste série de composés analogues. Les résultats empiriques ont montré que les propriétés optoélectroniques de la plateforme sont régies par le degré de communication électronique entre l’aryle proximal, le pyrrole sur lequel il est attaché et le noyau indolique adjacent à ce dernier. Les maximums d’absorption dans le rouge sont modulables entre 547 et 628 nm et la fluorescence des composés se situe dans le proche- infrarouge. L’un des composé s’est révélé souhaitable pour une utilisation en photovoltaïque ainsi qu’à titre de sonde à pH. La troisième famille comporte cinq complexes neutres de RuII basés sur des polypyridines et portant un ligand azadipyrrométhène cyclométalé. Les composés ont montré une forte absorption de photons dans la région de 600 à 800 nm (rouge à proche- infrarouge) et qui a pu être étendue au-delà de 1100 nm dans le cas des dérivés portant un ligand terpyridine. L’analyse des propriétés optoélectroniques de façon empirique et théorique a montré un impact significatif de la cyclométalation et ouvert la voie pour leur étude en tant que photosensibilisateurs en OPV et en DSSC. La capacité d’un des complexes à photo-injecter un électron dans la bande de conduction du semi-conducteur TiO2 a été démontré en collaboration avec le groupe du Pr Gerald J. Meyer à University of North Carolina at Chapel Hill, premier pas vers une utilisation dans les cellules solaires à pigments photosensibles. La stabilité des complexes en solution s’est toutefois avérée problématique et des pistes de solutions sont suggérées basées sur les connaissances acquises dans le cadre de cette thèse.
Resumo:
El Sistema Energético Solar-Hidrógeno (SESH) constituye un sistema energético cuya fuente primaria es la energía solar, directa o indirecta, y la secundaria el hidrógeno. Actualmente, se considera como la mejor opción para complementar en el mediano y sustituir en el largo plazo, al actual sistema energético basado en fuentes fósiles. En este contexto se desenvuelve este trabajo, cuyo objetivo es identificar y analizar los factores intervinientes en el desarrollo del SESH en el ámbito latinoamericano, mediante una investigación documental basada en una amplia revisión bibliográfica. Se obtiene que la mayoría de países latinoamericanos disponen de ingentes potenciales aprovechables de energías renovables que harían posible y atractiva económicamente la implantación del SESH; que la hidrogenaría y biomasa son las fuentes más adecuadas como base para esta implantación, tanto por su potencial como por su presencia en la matriz energética y costos del SESH. Los estudios indican que la energización rural y el transporte urbano constituyen nichos de oportunidad para la penetración del SESH. También se reportan barreras: acciones de investigación escasas y concentradas en pocos países, un exiguo talento humano formado y capacitado para operar y desarrollar esta tecnología, como resultado de una débil oferta formativa; y la carencia de un marco legal e institucional que incentive el desarrollo de este sistema. Se concluye que sólo con la acción concertada de centros de investigación, universidades y la empresa privada, bajo la tutela del estado, se logrará que este elemento químico singular conduzca el desarrollo humano de la región por caminos sustentables.