903 resultados para progression
Resumo:
BACKGROUND & AIMS The interaction of KIR with their HLA ligands drives the activation and inhibition of natural killer (NK) cells. NK cells could be implicated in the development of liver fibrosis in chronic hepatitis C. METHODS We analysed 206 non-transplanted and 53 liver transplanted patients, selected according to their Metavir fibrosis stage. Several variables such as the number of activator KIR or the HLA ligands were considered in multinomial and logistic regression models. Possible confounding variables were also investigated. RESULTS The KIRs were not significant predictors of the fibrosis stage. Conversely, a significant reduction of the HLA-C1C2 genotype was observed in the most advanced fibrosis stage group (F4) in both cohorts. Furthermore, the progression rate of fibrosis was almost 10 times faster in the subgroup of patients after liver transplantation and HLA-C1C2 was significantly reduced in this cohort compared to non-transplanted patients. CONCLUSION This study suggests a possible role of KIR and their ligands in the development of liver damage. The absence of C1 and C2 ligands heterozygosity could lead to less inhibition of NK cells and a quicker progression to a high level of fibrosis in patients infected by HCV, especially following liver transplantation. This article is protected by copyright. All rights reserved.
Resumo:
PURPOSE The Geographic Atrophy Progression (GAP) study was designed to assess the rate of geographic atrophy (GA) progression and to identify prognostic factors by measuring the enlargement of the atrophic lesions using fundus autofluorescence (FAF) and color fundus photography (CFP). DESIGN Prospective, multicenter, noninterventional natural history study. PARTICIPANTS A total of 603 participants were enrolled in the study; 413 of those had gradable lesion data from FAF or CFP, and 321 had gradable lesion data from both FAF and CFP. METHODS Atrophic lesion areas were measured by FAF and CFP to assess lesion progression over time. Lesion size assessments and best-corrected visual acuity (BCVA) were conducted at screening/baseline (day 0) and at 3 follow-up visits: month 6, month 12, and month 18 (or early exit). MAIN OUTCOME MEASURES The GA lesion progression rate in disease subgroups and mean change from baseline visual acuity. RESULTS Mean (standard error) lesion size changes from baseline, determined by FAF and CFP, respectively, were 0.88 (0.1) and 0.78 (0.1) mm(2) at 6 months, 1.85 (0.1) and 1.57 (0.1) mm(2) at 12 months, and 3.14 (0.4) and 3.17 (0.5) mm(2) at 18 months. The mean change in lesion size from baseline to month 12 was significantly greater in participants who had eyes with multifocal atrophic spots compared with those with unifocal spots (P < 0.001) and those with extrafoveal lesions compared with those with foveal lesions (P = 0.001). The mean (standard deviation) decrease in visual acuity was 6.2 ± 15.6 letters for patients with image data available. Atrophic lesions with a diffuse (mean 0.95 mm(2)) or banded (mean 1.01 mm(2)) FAF pattern grew more rapidly by month 6 compared with those with the "none" (mean, 0.13 mm(2)) and focal (mean, 0.36 mm(2)) FAF patterns. CONCLUSIONS Although differences were observed in mean lesion size measurements using FAF imaging compared with CFP, the measurements were highly correlated with one another. Significant differences were found in lesion progression rates in participants stratified by hyperfluorescence pattern subtype. This large GA natural history study provides a strong foundation for future clinical trials.
Resumo:
PURPOSE The purpose of this study was to describe autofluorescence lifetime characteristics in Stargardt disease (STGD) using fluorescence lifetime imaging ophthalmoscopy (FLIO) and to investigate potential prognostic markers for disease activity and progression. METHODS Fluorescence lifetime data of 16 patients with STGD (mean age, 40 years; range, 22-56 years) and 15 age-matched controls were acquired using a fluorescence lifetime imaging ophthalmoscope based on a Heidelberg Engineering Spectralis system. Autofluorescence was excited with a 473-nm laser, and decay times were measured in a short (498-560 nm) and long (560-720 nm) spectral channel. Clinical features, autofluorescence lifetimes and intensity, and corresponding optical coherence tomography images were analyzed. One-year follow-up examination was performed in eight STGD patients. Acquired data were correlated with in vitro measured decay times of all-trans retinal and N-retinylidene-N-retinylethanolamine. RESULTS Patients with STGD displayed characteristic autofluorescence lifetimes within yellow flecks (446 ps) compared with 297 ps in unaffected areas. In 15% of the STGD eyes, some flecks showed very short fluorescence lifetimes (242 ps). Atrophic areas were characterized by long lifetimes (474 ps), with some remaining areas of normal to short lifetimes (322 ps) toward the macular center. CONCLUSIONS Patients with recent disease onset showed flecks with very short autofluorescence lifetimes, which is possible evidence of accumulation of retinoids deriving from the visual cycle. During the study period, many of these flecks changed to longer lifetimes, possibly due to accumulation of lipofuscin. Therefore, FLIO might serve as a useful tool for monitoring of disease progression. (ClinicalTrials.gov number, NCT01981148.).
Resumo:
The major complications for tumor therapy are (i) tumor spread (metastasis); (ii) the mixed nature of tumors (heterogeneity); and (iii) the capacity of tumors to evolve (progress). To study these tumor characteristics, the rat 13762NF mammary adenocarcinoma was cloned and studied for metastatic properties and sensitivities to therapy (chemotherapy, radiation and hyperthermia). The cell clones were heterogeneous and no correlation between metastatic potential and therapeutic sensitivities was observed. Further, these phenotypes were unstable during passage in vitro; yet, the changes were clone dependent and reproducible using different cryoprotected cell stocks. To understand the phenotypic instability, subclones were isolated from low and high passage cell clones. Each subclone possessed a unique composite phenotype. Again, no apparent correlation was seen between metastatic potential and sensitivity to therapy. The results demonstrated that (1) tumor cells are heterogeneous for multiple phenotypes; (2) tumor cells are unstable for multiple phenotypes; (3) the magnitude, direction and time of occurrence of phenotypic drift is clone dependent; (4) the sensitivity of cell clones to ionizing radiation (gamma or heat) and chemotherapy agents is independent of their metastatic potential; (5) shifts in metastatic potential and sensitivity to therapy may occur simultaneously but are not linked; and (6) tumor cells independently diverge to form several subpopulations with unique phenotypic profiles. ^
Resumo:
Prostate cancer is the second most commonly diagnosed cancer among men in the United States. In this study, evidence is presented to support the hypothesis that specific chromosomal aberrations (involving one or more chromosomal regions) are associated with prostate cancer progression from organ-confined to locally advanced tumors and that some aberrations seen in high frequency in metastatic tumors may also be present in a subset of primary tumors. To determine the appropriate approach to address this hypothesis, I have established a modified CGH protocol by microdissection and DOP-PCR for use in detecting chromosomal changes in clinical prostate tumor specimens that is more sensitive and accurate than conventional CGH methods. I have successfully performed the improved CGH protocol to screen for genetic changes of 24 organ confined (pT2) and 21 locally advanced (pT3b) clinical prostate cancer specimens without metastases (N0M0). Comparisons of tumors by stage or Gleason scores following contingency table analysis showed that seven regions of the genome differed significantly between pT2 and pT3b tumors or between low and high Gleason tumors suggesting that these regions may be important in local prostate cancer progression. These included losses on 6p21–25, 6q24–27, 8p, 10q25–26, 15q22–26, and 18cen–q12 as well as gain of 3p13–q13. Multivariate analyses showed that loss of 8p (step1) and loss of 6q25–26 (or 6p21–25 or 10q25–26) (step 2) were predictive of pathologic stage or Gleason groups with 80% accuracy. Additional 5–7 steps in the multivariate model increased the predictive value to 91–95%. Comparison of the CGH data from the primary prostate tumors of this study with those obtained from published literature on metastases and recurrent tumors showed that the clinically more aggressive stage pT3b tumors shared more abnormalities in high frequency with metastases and recurrent tumors than less aggressive stage pT2 tumors. Furthermore, loss of 11cen–q22 was shared only between the primary tumors and metastases while gain of Xcen–q13 and loss of 18cen–q12 were in common between primary and recurrent tumors. These analyses suggest that the multistage model of prostate cancer progression is not linear and that some early primary tumors may be predisposed to metastasize or evolve into recurrent tumors due to the presence of specific genetic alterations. ^
Resumo:
Recently, it has become apparent that DNA repair mechanisms are involved in the malignant progression and resistance to therapy of gliomas. Many investigators have shown that increased levels of O6-methyl guanine DNA alkyltransferase, a DNA monoalkyl adduct repair enzyme, are correlated with resistance of malignant glioma cell lines to nitrosourea-based chemotherapy. Three important DNA excision repair genes ERCC1 (excision repair cross complementation group 1), ERCC2 (excision repair cross complementation group 2), and ERCC6 (excision repair cross complementation group 6) have been studied in human tumors. Gene copy number variation of ERCC1 and ERCC2 has been observed in primary glioma tissues. A number of reports describing a relationship between ERCC1 gene alterations and resistance to anti-cancer drugs have been also described. The levels of ERCC1 gene expression, however, have not been correlated with drug resistance in gliomas. The expression of ERCC6 gene transcribes has been shown to vary with tissue types and to be highest in the brain. There have been no comprehensive studies so far, however, of ERCC6 gene expression and molecular alterations in malignant glioma. This project examined the ERCC1 expression levels and correlated them with cisplatin resistance in malignant glioma cell lines. We also examined the molecular alterations of ERCC6 gene in primary glioma tissues and cells and analyzed whether these alterations are related to tumor progression and chemotherapy resistance. Our results indicate the presence of mutations and/or deletions in exons II and V of the ERCC6 gene, and these alterations are more frequent in exon II. Furthermore, the mutations and/or deletions in exon II were shown to be associated with increased malignant grade of gliomas. The results on the Levels of ERCC1 gene transcripts showed that expression levels correlate with cisplatin resistance. The increase in ERCC1 mRNA induced by cisplatin could be down-regulated by cyclosporin A and herbimycin A. The results of this study are likely to provide useful information for clinical treatment of human gliomas. ^
Resumo:
Comparison of gene expressing profiles between gliomas with different grades revealed frequent overexpression of insulin-like growth factor binding protein 2 (IGFBP2) in glioblastomas (GBM), in which uncontrolled cell proliferation, angiogenesis, invasion and anti-apoptosis are hallmarks. Using the glia-specific gene transfer transgenic mouse and the stable LN229(BP2) GBM cell lines, we found that IGFBP2 by itself cannot transform cells in vitro and in vivo. IGFBP2 had growth inhibitory effects on mouse primary neural progenitors, but overexpression of IGFBP2 had no effect on GBM cells. ^ Although IGFBP2 does not initiate gliomagenesis, using tissue array technology, we observed strong correlation between IGFBP2 overexpression and VEGF up-regulation in human diffuse gliomas. Furthermore, overexpression of IGFBP2 in GBM cells not only enhanced VEGF expression but also increased the malignant potential of U87 MG cells in our angiogenesis xenograft animal model. ^ In parallel to these studies, using established stable SNB19 GBM cells that overexpress IGFBP2, we found that IGFBP2 significantly increased invasion by induction of matrix metalloproteinase-2 (MMP-2) as well as other invasion related genes, providing evidence that IGFBP2 contributes to glioma progression in part by enhancing MMP-2 gene transcription and in turn tumor cell invasion. ^ Finally, we found that primary filial cells infected with an anti-sense IGFBP2 construct have markedly increased sensitivity to γ irradiation and reduced Akt activation. On the other hand, SNB19(BP2) stable lines have consistently increased levels of Akt and NFkB activation, suggesting that one possible mechanism for anti-apoptosic function of IGFBP2 is through the activation of Akt and NFkB. Beside this, what is especially interesting is the finding that Akt protein was cleaved and inactivated during apoptosis by caspases, and IGFBP2 can prevent Akt cleavage, revealing another possible mechanism through it IGFBP2 exhibit strong antiapoptotic effects. Our data showed that IGFBP2 is a specific substrate for caspase-3, raising the possibility that IGFBP2 may inhibit apoptosis by a suicide mechanism. ^ In summary, using cellular, genomics, and molecular approaches, this thesis documented the potential roles of IGFBP2 in glioma progression. Our findings shed light on an important biological aspect of glioma progression and may provide new insights useful for the design of novel mechanism-based therapies for GBM. ^
Resumo:
The potential impact of periodontal disease, a suspected risk factor for systemic diseases, presents challenges for health promotion and disease prevention strategies. This study examined clinical, microbiological, and immunological factors in a disease model to identify potential biomarkers that may be useful in predicting the onset and severity of both inflammatory and destructive periodontal disease. This project used an historical cohort design based on data obtained from 47 adult, female nonhuman primates followed over a 6-year period for 5 unique projects where the ligature-induced model of periodontitis was utilized. Standardization of protocols for sample collection allowed for comparison over time. Bleeding and pocket depth measures were selected as the dependent variables of relevance to humans based upon the literature and historical observations. Exposure variables included supragingival plaque, attachment level, total bacteria, black-pigmented bacteria, Gram-negative and Gram-positive bacteria, total IgG and IgA in crevicular fluid, specific IgG antibody in both crevicular fluid and serum, and IgG antibody to four select pathogenic microorganisms. Three approaches were used to analyze the data from this study. The first approach tested for differences in the means of the response variables within the group and among longitudinal observations within the group at each time point. The second approach examined the relationship among the clinical, microbiological, and immunological variables using correlation coefficients and stratified analyses. Multivariable models using GEE for repeated measures were produced as a predictive description of the induction and progression of gingivitis and periodontal disease. The multivariable models for bleeding (gingivitis) include supragingival plaque, total bacteria and total IgG while the second also contains supragingival plaque, Gram-positive bacteria, and total IgG. Two multivariable models emerged for periodontal disease. One multivariable model contains plaque, total bacteria, total IgG and attachment level. The second model includes black-pigmented bacteria, total bacteria, antibody to Campylobacter rectus, and attachment level. Utilization of the nonhuman primate model to prospectively examine causal hypotheses can provide a focus for human research on the mechanisms of progression from health to gingivitis to periodontitis. Ultimately, causal theories can guide strategies to prevent disease initiation and reduce disease severity. ^
Resumo:
14-3-3 is a family of highly conserved and ubiquitously expressed proteins in eukaryotic organisms. 14-3-3 isoforms bind in a phospho-serine/threonine-dependent manner to a host of proteins involved in essential cellular processes including cell cycle, signal transduction and apoptosis. We fortuitously discovered 14-3-3 zeta overexpression in many human primary cancers, such as breast, lung, and sarcoma, and in a majority of cancer cell lines. To determine 14-3-3 zeta involvement in breast cancer progression, we used immunohistochemical analysis to examine 14-3-3 zeta expression in human primary invasive breast carcinomas. High 14-3-3 zeta expression was significantly correlated with poor prognosis of breast cancer patients. Increased expression of 14-3-3 zeta was also significantly correlated with elevated PKB/Akt activation in patient samples. Thus, 14-3-3 zeta is a marker of poor prognosis in breast cancers. Furthermore, up-regulation of 14-3-3 zeta enhanced malignant transformation of cancer cells in vitro. ^ To determine the biological significance of 14-3-3 zeta in human cancers, small interfering RNAs (siRNA) were used to specifically block 14-3-3 zeta expression in cancer cells. 14-3-3 zeta siRNA inhibited cellular proliferation by inducing a G1 arrest associated with up-regulation of p27 KIP1 and p21CIP1 cyclin dependent kinase inhibitors. Reduced 14-3-3 zeta inhibited PKB/Akt activation while stimulating the p38 signaling pathway. Silencing 14-3-3 zeta expression also increased stress-induced apoptosis by caspase activation. Notably, 14-3-3 zeta siRNA inhibited transformation related properties of breast cancer cells in vitro and inhibited tumor progression of breast cancer cells in vivo. 14-3-3 zeta may be a key regulatory factor controlling multiple signaling pathways leading to tumor progression. ^ The data indicate 14-3-3 zeta is a major regulator of cell growth and apoptosis and may play a critical role in the development of multiple cancer types. Hence, blocking 14-3-3 zeta may be a promising therapeutic approach for numerous cancers. ^
Resumo:
The purpose of this research was two-fold; to investigate the effect of institutionalization on death and CD4 decline in a cohort of 325 HIV-infected Romanian children, and to investigate the effect of disclosure of the child's own HIV status in this cohort. All children were treated with Kaletra-based highly active antiretroviral therapy, and were followed from November, 2001 through October, 2004. The mean age of the children included in the cohort is 13. The study found that children in biological families were more likely to experience disease progression through either death or CD4 decline than children in institutions (p=0.04). The family home-style institution may prove to be a replicable model for the safe and appropriate care of HIV-infected orphaned and abandoned children and teens. The study also found that children who do not know their own HIV infection status were more likely to experience disease progression through either death or CD4 decline than children who know their HIV diagnosis (p=0.03). This evidence suggests that, in the context of highly active anti retroviral therapy, knowledge of one's own HIV infection status is associated with delayed HIV disease progression. ^
Resumo:
Recent progress in diagnostic tools allows many breast cancers to be detected at an early pre-invasive stage. Thus, a better understanding of the molecular basis of early breast cancer progression is essential. 14-3-3 is a family of highly conserved and ubiquitously expressed proteins that are expressed in all eukaryotic organisms. In mammals there are seven isoforms, which bind to phosphor-serine/threonine residues regulating essential cellular processes such as signal transduction, cell cycle progression, and apoptosis. Our laboratory has discovered that a particular 14-3-3 family member, Zeta, is overexpressed in over 40% of breast tumor tissues. Furthermore, I examined the stage of breast disease in which 14-3-3ζ overexpression occurs and found that increased expression of 14-3-3ζ begins at the stage of atypical ductal hyperplasia, a very early stage of breast disease that confers increased risk for progress toward breast cancer. To determine whether 14-3-3ζ overexpression is a decisive early event in breast cancer, I overexpressed 14-3-3ζ in MCF10A cells, a non-transformed mammary epithelial cell (MEC) line and examined its impact on acini formation in a three dimensional (3D) culture model which simulates a basic unit of structure in the mammary gland. I discovered that 14-3-3ζ overexpression severely disrupted the acini architecture resulting in the disruption of polarity and luminal filling. Both are critical morphological events in the pre-neoplastic breast disease. This thesis focuses on the molecular mechanism of luminal filling. Proper lumen formation is a result of anoikis, a specific type apoptosis of cells not attached to the basement membrane. I found that 14-3-3ζ overexpression conferred a resistance to anoikis. Additionally, 14-3-3ζ overexpression in MCF10A cells and in MECs from 14-3-3ζ transgenic mice reduced expression of p53, which is known to mediate anoikis. Mechanistically, 14-3-3ζ induced hyperactivation of the PI3K/Akt pathway which led to phosphorylation and translocation of the MDM2 to the nucleus resulting in increased p53 degradation. Ectopic expression of p53 restored luminal apoptosis in 14-3-3ζ overexpressing MCF10A acini in 3D cultures. These data suggest that 14-3-3ζ overexpression is a critical event in early breast disease and down-regulation of p53 is one of the mechanisms by which 14-3-3ζ alters MEC acini structure and may increase the risk of progression to breast cancer. ^
Resumo:
Overexpression of insulin-like growth factor binding protein 2 (IGFBP2) is associated with progression and poor survival in many types of human cancer (such as prostate, ovarian, adrenocortical, breast, colorectal carcinomas, leukemia, and high-grade gliomas). We therefore hypothesize that IGFBP2 is a key regulator of tumor progression. We tested our hypothesis in gliomas using the somatic gene transfer RCAS-tva mouse model system, which permits the introduction of specific genes into specific, cell lineages, in this case glial cells (RCAS: Replication competent avian sarcomavirus, tv-a: avian RCAS virus receptor). Mice are transgenic and harbor the tv-a receptor under the control of a glial-specific promoter and study genes are cloned into the RCAS vector for post-natal intracranial delivery. For these experiments, the study genes were IGFBP2, platelet-derived growth factor B (PDGFB), K-Ras, Akt, and IIp45 (invasion inhibitory protein 45 kDa; known to bind and block IGFBP2 activity), which were delivered separately and in combination. Our results show that PDGFB signaling leads exclusively to the formation of low-grade (WHO grade II) oligodendrogliomas. PDGFB delivered in combination with IGFBP2 results in the formation of anaplastic oligodendrogliomas (WHO grade III), which are characterized by increased cellularity, vascular proliferation, small regions of necrosis, increased mitotic activity, and increased activation of the Akt pathway. IIp45 injected in combination with PDGFB and IGFBP2 ablates IGFBP2-induced tumor progression, which results in formation of low-grade oligodendrogliomas, and an overall reduction in tumor incidence. K-Ras expression was required to form astrocytomas with either IGFBP2 or Akt, indicating the activation of two separate pathways is necessary for gliomagenesis. In ex vivo experiments, blockade of Akt by an inhibitor led to decreased viability of cells co-expressing IGFBP2 versus PDGFB expression alone. This study provides definitive evidence, for the first time, that: (1) IGFBP2 plays a role in activation of the Akt pathway, (2) IGFBP2 collaborates with K-Ras or PDGFB in the development and progression of two major types of glioma, and (3) IGFBP2-induced tumor progression can be ablated by IIp45 or by specific inhibition of the Akt pathway. ^
Resumo:
Lung cancer is the leading cause of cancer deaths worldwide. The development of improved systemic therapy is needed for the most common form of the disease, non-small cell lung cancer (NSCLC). This will depend on the identification of valid molecular targets. Recent studies point to the receptor tyrosine kinase EphA2 as a novel therapeutic target. Overexpression of EphA2 has been demonstrated in a number of epithelial cancers, and its expression has been associated with more severe disease. Regulation of EphA2 in cancer is poorly understood. Recently, regulation of EphA2 by EGFR and KRAS has been reported in a number of in vitro models, but no examination of this relationship has been undertaken in patient tumors. Because of the established importance of EGFR and KRAS in NSCLC, we have investigated the relationship between these mutations and EphA2 in NSCLC patient tissues and cell lines. The significance of Epha2 expression was further examined by testing for correlation with survival, metastases, histology, and smoking status in patient tissues, and tumor cell proliferation and migration in vitro. EphA2 expression was analyzed in by immunohistochemistry in tissue microarray (TMA) format utilizing surgically resected lung cancer specimens. EGFR and KRAS mutation status was determined for the majority of specimens. EphA2 expression was detected in >90% of NSCLC tumors. High EphA2 expression was associated with decreased time to recurrence and metastases, and predicted poorer progression free and overall survival. Expression of EphA2 was positively correlated with activated EGFR and with KRAS mutation. Expression of EphA2 was also positively correlated with a history of smoking. There was no association between gender or histology and EphA2 expression. In H322 cells, activation of EGFR or KRAS resulted in an increase in EphA2 protein expression. Downregulation of EphA2 resulted in decreased proliferation in a clonal growth assay, and inhibited migration in a wound healing assay, in a panel of cell lines. The decrease in proliferation correlated with a transient decrease in the levels of phospho-ERK, a downstream effector of EGFR and KRAS. Based on these data, the potential of EphA2 as a therapeutic target for NSCLC should be further investigated. ^
Resumo:
The mammalian Forkhead Box (Fox) transcription factor (FoxM1) is implicated in tumorgenesis. However, the role and regulation of FoxM1 in gastric cancer remain unknown.^ I examined FoxM1 expression in 86 cases of primary gastric cancer and 57 normal gastric tissue specimens. I found weak expression of FoxM1 protein in normal gastric mucosa, whereas I observed strong staining for FoxM1 in tumor-cell nuclei in various gastric tumors and lymph node metastases. The aberrant FoxM1 expression is associated with VEGF expression and increased angiogenesis in human gastric cancer. A Cox proportional hazards model revealed that FoxM1 expression was an independent prognostic factor in multivariate analysis. Furthermore, overexpression of FoxM1 by gene transfer significantly promoted the growth and metastasis of gastric cancer cells in orthotopic mouse models, whereas knockdown of FoxM1 expression by small interfering RNA did the opposite. Next, I observed that alteration of tumor growth and metastasis by elevated FoxM1 expression was directly correlated with alteration of VEGF expression and angiogenesis. In addition, promotion of gastric tumorigenesis by FoxM1 directly and significantly correlated with transactivation of vascular endothelial growth factor (VEGF) expression and elevation of angiogenesis. ^ To further investigate the underlying mechanisms that result in FoxM1 overexpression in gastric cancer, I investigated FoxM1 and Krüppel-like factor 4 (KLF4) expressions in primary gastric cancer and normal gastric tissue specimens. Concomitance of increased expression of FoxM1 protein and decreased expression of KLF4 protein was evident in human gastric cancer. Enforced KLF4 expression suppressed FoxM1 protein expression. Moreover, a region within the proximal FoxM1 promoter was identified to have KLF4-binding sites. Finally, I found an increased FoxM1 expression in gastric mucosa of villin-Cre -directed tissue specific Klf4-null mice.^ In summary, I offered both clinical and mechanistic evidence that dysregulated expression of FoxM1 play an important role in gastric cancer development and progression, while KLF4 mediates negative regulation of FoxM1 expression and its loss significantly contributes to FoxM1 dysregulation. ^