999 resultados para processos sintáticos
Resumo:
This work had as objective verified the term-stability of the Soxhlet modified system with analytical and pharmacothecnical application in extractive processes of Nasturtium officinale. It has proven that the process is thermo-stable. The analysis with analytical have determined 3.606 mg g-1 in chlorogenic acid and 11.813 mg g-1 in rutin (extract 1:20 w/v) and with pharmacotecnical 3.427 mg g-1 in chlorogenic acid and 11.278 mg g-1 in rutin (extract 1:6 w/v). The income of the pharmacothecnical process was inferior to the analytical, suggesting that the pharmacothecnical process would need of at least the double of time in each extraction system.
Resumo:
The use of antioxidants either to prevent or retard food's lipids oxidation was approved after inquires that verified their security within a daily intake limit. In this study, the methodology was developed and validated for the analysis of synthetic antioxidants: propylgallate (PG), tert-butylhydroquinone (TBHQ), butylhydroxyanisole (BHA), octylgallate (OG) and butylhydroxytoluene (BHT) in vegetables oils, margarine and hydrogenated fats by high performance liquid chromatographic. The methodology revealed itself efficient, with recovery rates above 90% for all antioxidant substances, besides good linearity in concentration range of 40-240 mg kg-1 (r = 0,999), repeatability with CV < 3,7% and limit of quantification 16.55, 10.32, 1.40, 3.76 and 9.30 mg/kg for BHT, BHA, PG, OG and TBHQ, respectively.
Resumo:
Secondary alcohol concentrations in sugar cane spirits from different origins were determined by gas chromatography. A great variation in the concentration of the secondary alcohols was found in these spirits. Of the 33 brands analyzed, 8 of them were found to be out of conformity with the legislation. Sec butanol, for which the maximum allowed concentration level is 100 mg.L-1 in absolute ethanol, was found within a concentration range between 5 mg.L-1, the limit of quantitation (LQ) and 408 mg.L-1 in absolute ethanol. Sugar cane samples from Salinas, MG, were the only ones that exhibited self similarity because of the low concentrations of n-butanol and n-amylic alcohol (< limit of detection LD).
Resumo:
This paper analyses the oxidation of covellite and molybdenite by Acidithiobacillus ferrooxidans strain LR using respirometric experiments. The results showed that both sulfides were oxidized by A. ferrooxidans, however, the covellite oxidation was much higher than molybdenite. Regarding the kinetic oxidation, the findings revealed that just molybdenite oxidation followed the classical Michaelis-Menten kinetic. It is probably associated with the pathway which these sulfides react to chemistry-bacterial attack, what is influenced by its electronic structures. Besides, experiments conducted in the presence of Fe3+ did not indicate alterations in molybdenite oxidation. Thus, ferric ions seem not to be essential to the sulfide oxidations.
Resumo:
In this work the potentiality of reductive-oxidative processes based on zero-valent iron was studied aiming the degradation of nitroaromatic compounds and the remediation of residues from the explosive industry. The reductive process was applied as a continuous treatment system, using steel-wool as zero-valent iron source. The process permitted an almost total degradation of nitrobenzene, nitrophenol, nitrotoluene, dinitrotoluene and trinitrotoluene, probably with generation of the respective amine-derivative. The yellow-water residue, containing soluble trinitrotoluene, was notably modified by the reductive process, a fact that permitted a substantial enhancement of its biodegradability. Furthermore, the subsequent photo-Fenton process allowed TOC removal of about 80%.
Resumo:
In this work the potentiality of photo-Fenton processes were investigated toward the degradation of aromatic hydrocarbons (BTXs) from water contaminated with gasoline. The main results demonstrated that BTXs can be quickly degraded by photo-Fenton process assisted by solar or artificial UV-A radiation, degradation that leads to generation of characteristic phenolic transient species (ie. phenol, hydroquinone and catechol). In the treatment of contaminated water by photo-Fenton processes assisted by solar light, complete BTXs removal was observed in reaction times of about 5 min. Mineralization of about 90% was also observed by applying a multiple H2O2 addition system.
Resumo:
The present article reviews different aspects of the chemistry of two widely used β-lactam antibiotics Clavulanic Acid and Cephamycin C. The article discusses important details of the biosynthesis of these compounds, their action mechanism and, principally, the methods employed in their isolation and purification, in accordance with the available literature. Despite the large quantity of available articles and patents concerning β-lactam antibiotics, those which describe the isolation and purification of Clavulanic Acid and Cephamycin C are rare. Overall, the intention of this article is to discuss the up-to-date scientific research related to the compounds under review.
Resumo:
The use of the Fenton's reagent process has been investigated for the remediation of a Brazilian soil contaminated by diesel. Laboratory experiments were conducted in batch experiments. Slurries, consisting of 10 g of diesel-contaminated soil and 30 mL of Fenton's Reagent (0.41 mol L-1 H(2)0(2) and 0.18 mol L-1 FeSO4). The experiments were monitored during 24, 48 and 72 h. The efficiency of the Fenton treatment was dependent on the time of contact between soil and Fenton's reagents and matrix characteristics, probably iron content. Data suggested that no iron addition is needed for the application of Fenton-like treatment for the remediation of diesel-contaminated iron rich soils after 72 h reaction.
Resumo:
The main goal of this paper was to study the degradation of synthetic dyes using photoelectrocatalytic properties of particulate films of TiO2 supported on plates of titanium and stimulated by UV-Vis radiation. The dyes decolorizations were measured using spectrophotometric methods to verify which the conditions on Ti/TiO2 electrode was the best for the photoelectrodegradation of them. The results showed that decolorization rates were higher than 90% during a period of 270 min. FT-IR spectroscopy showed that intermediate substances were formed after the decolorization and N=N group/aromatic structures were preserved independently of the specific structure of the dyes.
Resumo:
In this work, four different process configurations, including three simultaneous saccharification and fermentation (SSF) schemes and one separate hydrolysis and fermentation (SHF) scheme, were compared, at 8% water-insoluble solids, regarding ethanol production from steam-pretreated and alkali-delignified sugar cane bagasse. Two configurations included a 16 h lasting enzymatic presaccharification prior to SSF, and the third one was a classical SSF without presaccharification. Cellulose conversion was higher for the delignified bagasse, and higher in SSF experiments than in SHF. The highest cellulose-to-ethanol conversion (around 60% in 24 h) and maximum ethanol volumetric productivities (0.29-0.30 g/L.h) were achieved in the presaccharification-assisted SSF.
Resumo:
Cyclodextrins (CDs) are water soluble cyclic sugars with a hydrophobic nanometric cavity that permits the formation of host/guest inclusion complexes with a large variety of molecules, alternating their physical-chemical properties. In the present review CD research related to the processing of textiles is revised and discussed. CDs may function as encapsulating, dispersing and levelling agents in the dyeing and washing of textiles. Furthermore they may be anchored to polymers and textile fibers in order to impart special properties such as odor reduction, UV protection or for the controlled release of perfumes, aromas, mosquito repellents or substances with therapeutical effects.
Resumo:
In this work the treatment of textile dyeing baths by a sequential reductive-oxidative process was evaluated, aiming its utilization in new dyeing process. The results demonstrated that reactive dyes can be easily degraded by reductive processes mediated by zero-valent iron, a fact that induces decolorizations of about 80%. Sequential photo-Fenton processes permit almost total removal of the residual color with elimination of 90% of the COD content. The reuse of treated residues permits the achievement of materials that attend practically all textile specifications, with exception of the color difference parameter (ΔE), which is unsatisfactory toward the importation standards, but adequate for the national market.
Resumo:
Antioxidants are an alternative to prevent or slow the degradation of the biofuel. In this study, it was evaluated the oxidative stability of B100 biodiesel from soybean oil in the presence of three commercial synthetic antioxidants, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butylhydroquinone (TBHQ), pure or blended, from the experimental design of simplex-centroid mixture. The reaction order and rate constant were also calculated for all tests. The treatment containing pure TBHQ proved to be the most effective, proven by design, the optimum mix obtained and the rate constant. Binary and ternary mixtures containing TBHQ also showed appreciable antioxidant effect.
Resumo:
In this work the degradation of textile dyes were evaluated, using Fenton, photo-Fenton and electro-Fenton processes. Under optimized conditions Fenton and photo-Fenton processes showed high decolorization capacity of the model dyes. The electro-Fenton process was carried out in an undivided electrochemical reactor (1000 mL) equipped with a carbon-felt cathode (253 cm²) and a platinum gauze anode (6 cm²). Under optimal conditions (J: 1.6 mA cm-2, Na2SO4: 0.075 mol L-1, pH: 3) H2O2 concentration of about 60 mg L-1 was observed. The addition of Fe2+ (15 mg L-1) induces Fenton reactions that permit almost total decolorization of textile dyes.
Resumo:
A continuous photochemical treatment system was developed for aiming the treatment of aqueous solutions containing relevant micro-pollutants (microcystin-LR, sulfamethoxazole and 17-b estradiol). The continuous photo-Fenton process provided high degradation efficiency. However, contact time between samples and the irradiated region is short relative to total treatment time, indicating that observed changes are predominantly due to the Fenton process. Higher degradation efficiency was observed in systems operated using two treatment cycles, the first involving a batch Fenton process and the second a continuous photo-Fenton treatment.