935 resultados para plasmons, dark field microscopy, gold particles, fluorescence enhancement
Resumo:
In the present work, the anodic oxide films of Al, Al-Cu 4.5% and Al-Si 6.5% alloys are formed using direct and pulse current. In the case of Al-Cu and Al-Si alloys, the electrolyte used contains sulfuric acid and oxalic acid, meanwhile for Al the electrolyte contains sulfuric acid only. Al-Cu alloy was submitted to a heat treatment in order to decrease the effect of inter metallic phase theta upon the anodic film structure. Fractured samples were observed using a field emission gun scanning electron microscope JSM-6330F at (LME)/Brazilian Synchrotron Light Laboratory (LNLS), Campinas, SP, Brazil. The oxide film images enable evaluation of the pore size and form with a resolution similar to the transmission electron microscope (TEM) resolution. It is also observed that the anodizing process using pulse current produces an irregular structure of pore walls, and by direct cur-rent it is produced a rectilinear pore wall. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Microfluidic technologies have great potential to help create automated, cost-effective, portable devices for rapid point of care (POC) diagnostics in diverse patient settings. Unfortunately commercialization is currently constrained by the materials, reagents, and instrumentation required and detection element performance. While most microfluidic studies utilize planar detection elements, this dissertation demonstrates the utility of porous volumetric detection elements to improve detection sensitivity and reduce assay times. Impedemetric immunoassays were performed utilizing silver enhanced gold nanoparticle immunoconjugates (AuIgGs) and porous polymer monolith or silica bead bed detection elements within a thermoplastic microchannel. For a direct assay with 10 µm spaced electrodes the detection limit was 0.13 fM AuIgG with a 3 log dynamic range. The same assay was performed with electrode spacing of 15, 40, and 100 µm with no significant difference between configurations. For a sandwich assay the detection limit was10 ng/mL with a 4 log dynamic range. While most impedemetric assays rely on expensive high resolution electrodes to enhance planar senor performance, this study demonstrates the employment of porous volumetric detection elements to achieve similar performance using lower resolution electrodes and shorter incubation times. Optical immunoassays were performed using porous volumetric capture elements perfused with refractive index matching solutions to limit light scattering and enhance signal. First, fluorescence signal enhancement was demonstrated with a porous polymer monolith within a silica capillary. Next, transmission enhancement of a direct assay was demonstrated by infusing aqueous sucrose solutions through silica bead beds with captured silver enhanced AuIgGs yielding a detection limit of 0.1 ng/mL and a 5 log dynamic range. Finally, ex situ functionalized porous silica monolith segments were integrated into thermoplastic channels for a reflectance based sandwich assay yielding a detection limit of 1 ng/mL and a 5 log dynamic range. The simple techniques for optical signal enhancement and ex situ element integration enable development of sensitive, multiplexed microfluidic sensors. Collectively the demonstrated experiments validate the use of porous volumetric detection elements to enhance impedemetric and optical microfluidic assays. The techniques rely on commercial reagents, materials compatible with manufacturing, and measurement instrumentation adaptable to POC diagnostics.
Resumo:
Incorporation of thymidine analogues in replicating DNA, coupled with antibody and fluorophore staining, allows analysis of cell proliferation, but is currently limited to monolayer cultures, fixed cells and end-point assays. We describe a simple microscopy imaging method for live real-time analysis of cell proliferation, S phase progression over several division cycles, effects of anti-proliferative drugs and other applications. It is based on the prominent (~ 1.7-fold) quenching of fluorescence lifetime of a common cell-permeable nuclear stain, Hoechst 33342 upon the incorporation of 5-bromo-2’-deoxyuridine (BrdU) in genomic DNA and detection by fluorescence lifetime imaging microscopy (FLIM). We show that quantitative and accurate FLIM technique allows high-content, multi-parametric dynamic analyses, far superior to the intensity-based imaging. We demonstrate its uses with monolayer cell cultures, complex 3D tissue models of tumor cell spheroids and intestinal organoids, and in physiological study with metformin treatment.
Resumo:
Although the debate of what data science is has a long history and has not reached a complete consensus yet, Data Science can be summarized as the process of learning from data. Guided by the above vision, this thesis presents two independent data science projects developed in the scope of multidisciplinary applied research. The first part analyzes fluorescence microscopy images typically produced in life science experiments, where the objective is to count how many marked neuronal cells are present in each image. Aiming to automate the task for supporting research in the area, we propose a neural network architecture tuned specifically for this use case, cell ResUnet (c-ResUnet), and discuss the impact of alternative training strategies in overcoming particular challenges of our data. The approach provides good results in terms of both detection and counting, showing performance comparable to the interpretation of human operators. As a meaningful addition, we release the pre-trained model and the Fluorescent Neuronal Cells dataset collecting pixel-level annotations of where neuronal cells are located. In this way, we hope to help future research in the area and foster innovative methodologies for tackling similar problems. The second part deals with the problem of distributed data management in the context of LHC experiments, with a focus on supporting ATLAS operations concerning data transfer failures. In particular, we analyze error messages produced by failed transfers and propose a Machine Learning pipeline that leverages the word2vec language model and K-means clustering. This provides groups of similar errors that are presented to human operators as suggestions of potential issues to investigate. The approach is demonstrated on one full day of data, showing promising ability in understanding the message content and providing meaningful groupings, in line with previously reported incidents by human operators.
Resumo:
Effective field theories (EFTs) are ubiquitous in theoretical physics and in particular in field theory descriptions of quantum systems probed at energies much lower than one or few characterizing scales. More recently, EFTs have gained a prominent role in the study of fundamental interactions and in particular in the parametriasation of new physics beyond the Standard Model, which would occur at scales Λ, much larger than the electroweak scale. In this thesis, EFTs are employed to study three different physics cases. First, we consider light-by-light scattering as a possible probe of new physics. At low energies it can be described by dimension-8 operators, leading to the well-known Euler-Heisenberg Lagrangian. We consider the explicit dependence of matching coefficients on type of particle running in the loop, confirming the sensitiveness to the spin, mass, and interactions of possibly new particles. Second, we consider EFTs to describe Dark Matter (DM) interactions with SM particles. We consider a phenomenologically motivated case, i.e., a new fermion state that couples to the Hypercharge through a form factor and has no interactions with photons and the Z boson. Results from direct, indirect and collider searches for DM are used to constrain the parameter space of the model. Third, we consider EFTs that describe axion-like particles (ALPs), whose phenomenology is inspired by the Peccei-Quinn solution to strong CP problem. ALPs generically couple to ordinary matter through dimension-5 operators. In our case study, we investigate the rather unique phenomenological implications of ALPs with enhanced couplings to the top quark.
Resumo:
The field of bioelectronics involves the use of electrodes to exchange electrical signals with biological systems for diagnostic and therapeutic purposes in biomedical devices and healthcare applications. However, the mechanical compatibility of implantable devices with the human body has been a challenge, particularly with long-term implantation into target organs. Current rigid bioelectronics can trigger inflammatory responses and cause unstable device functions due to the mechanical mismatch with the surrounding soft tissue. Recent advances in flexible and stretchable electronics have shown promise in making bioelectronic interfaces more biocompatible. To fully achieve this goal, material science and engineering of soft electronic devices must be combined with quantitative characterization and modeling tools to understand the mechanical issues at the interface between electronic technology and biological tissue. Local mechanical characterization is crucial to understand the activation of failure mechanisms and optimizing the devices. Experimental techniques for testing mechanical properties at the nanoscale are emerging, and the Atomic Force Microscope (AFM) is a good candidate for in situ local mechanical characterization of soft bioelectronic interfaces. In this work, in situ experimental techniques with solely AFM supported by interpretive models for the characterization of planar and three-dimensional devices suitable for in vivo and in vitro biomedical experimentations are reported. The combination of the proposed models and experimental techniques provides access to the local mechanical properties of soft bioelectronic interfaces. The study investigates the nanomechanics of hard thin gold films on soft polymeric substrates (Poly(dimethylsiloxane) PDMS) and 3D inkjet-printed micropillars under different deformation states. The proposed characterization methods provide a rapid and precise determination of mechanical properties, thus giving the possibility to parametrize the microfabrication steps and investigate their impact on the final device.
Resumo:
This PhD thesis focuses on studying the classical scattering of massive/massless particles toward black holes, and investigating double copy relations between classical observables in gauge theories and gravity. This is done in the Post-Minkowskian approximation i.e. a perturbative expansion of observables controlled by the gravitational coupling constant κ = 32πGN, with GN being the Newtonian coupling constant. The investigation is performed by using the Worldline Quantum Field Theory (WQFT), displaying a worldline path integral describing the scattering objects and a QFT path integral in the Born approximation, describing the intermediate bosons exchanged in the scattering event by the massive/massless particles. We introduce the WQFT, by deriving a relation between the Kosower- Maybee-O’Connell (KMOC) limit of amplitudes and worldline path integrals, then, we use that to study the classical Compton amplitude and higher point amplitudes. We also present a nice application of our formulation to the case of Hard Thermal Loops (HTL), by explicitly evaluating hard thermal currents in gauge theory and gravity. Next we move to the investigation of the classical double copy (CDC), which is a powerful tool to generate integrands for classical observables related to the binary inspiralling problem in General Relativity. In order to use a Bern-Carrasco-Johansson (BCJ) like prescription, straight at the classical level, one has to identify a double copy (DC) kernel, encoding the locality structure of the classical amplitude. Such kernel is evaluated by using a theory where scalar particles interacts through bi-adjoint scalars. We show here how to push forward the classical double copy so to account for spinning particles, in the framework of the WQFT. Here the quantization procedure on the worldline allows us to fully reconstruct the quantum theory on the gravitational side. Next we investigate how to describe the scattering of massless particles off black holes in the WQFT.
Resumo:
In this master's thesis, the formation of Primordial Black Holes (PBHs) in the context of multi-field inflation is studied. In these models, the interaction of isocurvature and curvature perturbations can lead to a significant enhancement of the latter, and to the subsequent production of PBHs. Depending on their mass, these can account for a significant fraction (or, in some cases, the entirety) of the universe's Dark Matter content. After studying the theoretical framework of generic N-field inflationary models, the focus is restricted to the two-field case, for which a few concrete realisations are analysed. A numerical code (written in Wolfram Mathematica) is developed to make quantitative predictions for the main inflationary observables, notably the scalar power spectra. Parallelly, the production of PBHs due to the dynamics of 2-field inflation is examined: their mass, as well as the fraction of Dark Matter they represent, is calculated for the models considered previously.
Resumo:
Very high field (29)Si-NMR measurements using a fully (29)Si-enriched URu(2)Si(2) single crystal were carried out in order to microscopically investigate the hidden order (HO) state and adjacent magnetic phases in the high field limit. At the lowest measured temperature of 0.4 K, a clear anomaly reflecting a Fermi surface instability near 22 T inside the HO state is detected by the (29)Si shift, (29)K(c). Moreover, a strong enhancement of (29)K(c) develops near a critical field H(c) ≃ 35.6 T, and the ^{29}Si-NMR signal disappears suddenly at H(c), indicating the total suppression of the HO state. Nevertheless, a weak and shifted (29)Si-NMR signal reappears for fields higher than H(c) at 4.2 K, providing evidence for a magnetic structure within the magnetic phase caused by the Ising-type anisotropy of the uranium ordered moments.
Resumo:
Energy dispersive X-ray spectroscopy microanalysis (EDX), scanning electron microscopy (SEM), and Archimedes' Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C), Hydrogum 5 (H5), Hydrogum (H), Orthoprint (O), and Jeltrate Plus (JP). The different alginate powders (0.5 mg) were fixed on plastic stubs (n = 5) and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450(°)C for 3 h. The alginate materials were mainly composed of silicon (Si) by weight (C-81.59%, H-79.89%, O-78.87%, H5-77.95%, JP-66.88%, wt). The filler fractions in volume (vt) were as follows: H5-84.85%, JP-74.76%, H-70.03%, O-68.31%, and C-56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology.
Resumo:
Histological and histochemical observations support the hypothesis that collagen fibers can link to elastic fibers. However, the resulting organization of elastin and collagen type complexes and differences between these materials in terms of macromolecular orientation and frequencies of their chemical vibrational groups have not yet been solved. This study aimed to investigate the macromolecular organization of pure elastin, collagen type I and elastin-collagen complexes using polarized light DIC-microscopy. Additionally, differences and similarities between pure elastin and collagen bundles (CB) were investigated by Fourier transform-infrared (FT-IR) microspectroscopy. Although elastin exhibited a faint birefringence, the elastin-collagen complex aggregates formed in solution exhibited a deep birefringence and formation of an ordered-supramolecular complex typical of collagen chiral structure. The FT-IR study revealed elastin and CB peptide NH groups involved in different types of H-bonding. More energy is absorbed in the vibrational transitions corresponding to CH, CH2 and CH3 groups (probably associated with the hydrophobicity demonstrated by 8-anilino-1-naphtalene sulfonic acid sodium salt [ANS] fluorescence), and to νCN, δNH and ωCH2 groups of elastin compared to CB. It is assumed that the α-helix contribution to the pure elastin amide I profile is 46.8%, whereas that of the B-sheet is 20% and that unordered structures contribute to the remaining percentage. An FT-IR profile library reveals that the elastin signature within the 1360-1189cm(-1) spectral range resembles that of Conex-Toray aramid fibers.
Resumo:
Extracts from malagueta pepper (Capsicum frutescens L.) were obtained using supercritical fluid extraction (SFE) assisted by ultrasound, with carbon dioxide as solvent at 15MPa and 40°C. The SFE global yield increased up to 77% when ultrasound waves were applied, and the best condition of ultrasound-assisted extraction was ultrasound power of 360W applied during 60min. Four capsaicinoids were identified in the extracts and quantified by high performance liquid chromatography. The use of ultrasonic waves did not influence significantly the capsaicinoid profiles and the phenolic content of the extracts. However, ultrasound has enhanced the SFE rate. A model based on the broken and intact cell concept was adequate to represent the extraction kinetics and estimate the mass transfer coefficients, which were increased with ultrasound. Images obtained by field emission scanning electron microscopy showed that the action of ultrasonic waves did not cause cracks on the cell wall surface. On the other hand, ultrasound promoted disturbances in the vegetable matrix, leading to the release of extractable material on the solid surface. The effects of ultrasound were more significant on SFE from larger solid particles.
Resumo:
One of the most important properties of quantum dots (QDs) is their size. Their size will determine optical properties and in a colloidal medium their range of interaction. The most common techniques used to measure QD size are transmission electron microscopy (TEM) and X-ray diffraction. However, these techniques demand the sample to be dried and under a vacuum. This way any hydrodynamic information is excluded and the preparation process may alter even the size of the QDs. Fluorescence correlation spectroscopy (FCS) is an optical technique with single molecule sensitivity capable of extracting the hydrodynamic radius (HR) of the QDs. The main drawback of FCS is the blinking phenomenon that alters the correlation function implicating in a QD apparent size smaller than it really is. In this work, we developed a method to exclude blinking of the FCS and measured the HR of colloidal QDs. We compared our results with TEM images, and the HR obtained by FCS is higher than the radius measured by TEM. We attribute this difference to the cap layer of the QD that cannot be seen in the TEM images.
Resumo:
In this work, the electron field emission behaviour of electrodes formed by carbon nanotubes (CNTs) grown onto monolithic vitreous carbon (VCarbon) substrates with microcavities is presented. Scanning electron microscopy was used to characterize the microstructure of the films. Tungsten probes, stainless steel sphere, and phosphor electrodes were employed in the electron field emission study. The CNT/VCarbon composite represents a route to inexpensive excellent large area electron emission cathodes with fields as low as 2.1 V mu m(-1). In preliminary lifetime tests for a period of about 24 h at an emission current of about 4 mA cm(-2), there is an onset degradation of the emission current of about 28%, which then stabilizes. Electron emission images of the composites show the cavity of the samples act as separate emission sites and predominantly control the emission process. The emission of CNTs/VCarbon was found to be stable for several hours. (c) 2008 American Institute of Physics.
Resumo:
The citrus greening (or huanglongbing) disease has caused serious problems in citrus crops around the world. An early diagnostic method to detect this malady is needed due to the rapid dissemination of Candidatus Liberibacter asiaticus (CLas) in the field. This analytical study investigated the fluorescence responses of leaves from healthy citrus plants and those inoculated with CLas by images from a stereomicroscope and also evaluated their potential for the early diagnosis of the infection caused by this bacterium. The plants were measured monthly, and the evolution of the bacteria on inoculated plants was monitored by real-time quantitative polymerase chain reaction (RT-qPCR) amplification of CLas sequences. A statistical method was used to analyse the data. The selection of variables from histograms of colours (colourgrams) of the images was optimized using a paired Student's t-test. The intensity of counts for green colours from images of fluorescence had clearly minor variations for healthy plants than diseased ones. The darker green colours were the indicators of healthy plants and the light colours for the diseased. The method of fluorescence images is novel for fingerprinting healthy and diseased plants and provides an alternative to the current method represented by PCR and visual inspection. A new, non-subjective pattern of analysis and a non-destructive method has been introduced that can minimize the time and costs of analyses.