880 resultados para phenophase response to climate change
Resumo:
Ashby wrote about cybernetics, during which discourse he described a Law that attempts to resolve difficulties arising in complex situations – he suggested using variety to combat complexity. In this paper, we note that the delegates to the UN Framework Convention on Climate Change (UNFCCC) meeting in Kyoto, 1997, were offered a ‘simplifying solution’ to cope with the complexity of discussing multiple pollutants allegedly contributing to ‘climate change’. We assert that the adoption of CO2eq has resulted in imprecise thinking regarding the ‘carbon footprint’ – that is, ‘CO2’ – to the exclusion of other pollutants. We propose, as Ashby might have done, that the CO2eq and other factors within the ‘climate change’ negotiations be disaggregated to allow careful and specific individual solutions to be agreed on each factor. We propose a new permanent and transparent ‘action group’ be in charge of agenda setting and to manage the messy annual meetings. This body would be responsible for achieving accords at these annual meetings, rather than forcing this task on national hosts. We acknowledge the task is daunting and we recommend moving on from Ashby's Law to Beer's Viable Systems approach.
Resumo:
Aim of the paper: The purpose is to gather the practices and to model the impacts of climate change on fiscal spending and revenues, responsibilities and opportunities, balance and debt related to climate change (CC). Methodology of the paper: The methodology will distinguish fiscal cost of mitigation and adaptation, besides direct and indirect costs. It will also introduce cost benefit analyses to evaluate the propensity of policy makers for action or passivity. Several scenarios will be drafted to see the different outcomes. The scenarios shall contain the possible losses in the natural and artificial environment and resources. Impacts on public budget are based on damage of income opportunities and capital/wealth/natural assets. There will be a list of actions when the fiscal correction of market failures will be necessary. Findings: There will be a summary and synthesis of estimation models on CC impacts on public finances, and morals of existing/existed budgeting practices on mitigation. The model will be based on damages (and maybe benefits) from CC, adjusted with probabilities of scenarios and policy making propensity for action. Findings will cover the way of funding of fiscal costs. Practical use, value added: From the synthesis of model, the fiscal cost of mitigation and adaptation can be estimated for any developed, emerging and developing countries. The paper will try to reply, also, for the challenge how to harmonize fiscal and developmental sustainability.
Resumo:
The aim of this paper is to survey the game theory modelling of the behaviour of global players in mitigation and adaptation related to climate change. Three main fields are applied for the specific aspects of temperature rise: behaviour games, CPR problem and negotiation games. The game theory instruments are useful in analyzing strategies in uncertain circumstances, such as the occurrence and impacts of climate change. To analyze the international players’ relations, actions, attitude toward carbon emission, negotiation power and motives, several games are applied for the climate change in this paper. The solution is surveyed, too, for externality problem.
Resumo:
The study provides an overview of the application possibilities of game theory to climate change. The characteristics of games are adapted to the topics of climate and carbon. The importance of uncertainty, probability, marginal value of adaptation, common pool resources, etc. are tailored to the context of international relations and the challenge of global warming.
Resumo:
Aim of the paper: The purpose is to gather the practices and to model the impacts of climate change on fiscal spending and revenues, responsibilities and opportunities, balance and debt related to climate change (CC). Methodology of the paper: The methodology will distinguish fiscal cost of mitigation and adaptation, besides direct and indirect costs. It will also introduce cost benefit analyses to evaluate the propensity of policy makers for action or passivity. Several scenarios will be drafted to see the different outcomes. The scenarios shall contain the possible losses in the natural and artificial environment and resources. Impacts on public budget are based on damage of income opportunities and capital/wealth/natural assets. There will be a list of actions when the fiscal correction of market failures will be necessary. Findings: There will be a summary and synthesis of estimation models on CC impacts on public finances, and morals of existing/existed budgeting practices on mitigation. The model will be based on damages (and maybe benefits) from CC, adjusted with probabilities of sce-narios and policy making propensity for action. Findings will cover the way of funding of fiscal costs. Practical use, value added: From the synthesis of model, the fiscal cost of mitigation and adaptation can be estimated for any developed, emerging and developing countries. The paper will try to reply, also, for the challenge how to harmonize fiscal and developmental sustainability.
Resumo:
The article deals with the changing visual value of deciduous species. Due to climate change, the climatic patterns found on the plants’ growing area may change. Therefore, foliage of deciduous trees changes itscolor in the fall season witha different timing and intensity. This shift can modify the functional, ornamental and ecological value of these plants in the fall season, which is of special interest in the context of landscape design. However, this effect of climate change hasn’t been examined in terms of landscape architecture yet.In the article we are looking for deciduous species that can be appropriate subjectsforresearch, we are giving suggestions for choosing the right location for a future research and proposing available resources of satellite images, that can provide the basis for evaluation of leaf coloring. We also review already existing methods for calculating the degree of fall leaf coloring.We propose a novel method of satellite image processing to evaluate the coloring of a stand. Leaf Coloring Index (LCI) shows the leaf color’s relation to the color realms. LCI is appropriate for setting up a phenological model based onclimate data in a future research. Based on future climate models, the change of the examined stand’s visual value can be predicted. The results might affect the future use of plant species in landscape architecture.
Resumo:
Climate change highly impacts on tree growth and also threatens the forest of the karstic terrains. From the 1980s the frequency of decay events of the Pinus nigra Arnold forests showed a marked increase in Hungary. To understanding the vulnerability of Pinus nigra forests to climate change on shallow karstic soils in continental-sub Mediterranean climatic conditions we developed the study of three sampled population in the typical karstic landscape of Veszprém in North Transdanubia. We built our model on non-invasive approach using the annual growth of the individuals. MPI Echam5 climate model and as aridity index the Thornthwaite Agrometeorological Index were used. Our results indicate that soil thickness up to 11 cm has a major influence on the main growth intensity, however, aridity determines the annual growth rate. Our model results showed that the increasing decay frequency in the last decades was a parallel change to the decreasing growth rate of pines. The climate model predicts the similar, increased decay frequency to the presents. Our results can be valid for a wider areas of the periphery of Mediterranean climate zone while the annual-growth based model is a cost-effective and simple method to study the vitality of pine trees in a given area.
Resumo:
Tropical rainforests account for more than a third of global net primary production and contain more than half of the global forest carbon. Though these forests are a disproportionately important component of the global carbon cycle, the relationship between rainforest productivity and climate remains poorly understood. Understanding the link between current climate and rainforest tree stem diameter increment, a major constituent of forest productivity, will be crucial to efforts at modeling future climate and rainforest response to climate change. This work reports the physiological and stem growth responses to micrometeorological and phenological states of ten species of canopy trees in a Costa Rican wet tropical forest at sub-annual time intervals. I measured tree growth using band dendrometers and estimated leaf and reproductive phenological states monthly. Electronic data loggers recorded xylem sap flow (an indicator of photosynthetic rate) and weather at half-hour intervals. An analysis of xylem sap flow showed that physiological responses were independent of species, which allowed me to construct a general model of weather driven sap flow rates. This model predicted more than eighty percent of climate driven sap flow variation. Leaf phenology influenced growth in three of the ten species, with two of these species showing a link between leaf phenology and weather. A combination of rainfall, air temperature, and irradiance likely provided the cues that triggered leaf drop in Dipteryx panamensis and Lecythis ampla. Combining the results of the sap flow model, growth, and the climate measures showed tree growth was correlated to climate, though the majority of growth variation remained unexplained. Low variance in the environmental variables and growth rates likely contributed to the large amount of unexplained variation. A simple model that included previous growth increment and three meteorological variables explained from four to nearly fifty percent of the growth variation. Significant growth carryover existed in six of the ten species, and rainfall was positively correlated to growth in eight of the ten species. Minimum nighttime temperature was also correlated to higher growth rates in five of the species and irradiance in two species. These results indicate that tropical rainforest tree trunks could act as carbon sinks if future climate becomes wetter and slightly warmer. ^
Resumo:
Climate change has been a security issue for mankind since Homo sapiens first emerged on the planet, driving him to find new and better food, water, shelter, and basic resources for survival and the advancement of civilization. Only recently, however, has the rate of climate change coupled with man’s knowledge of his own role in that change accelerated, perhaps profoundly, changing the security paradigm. If we take a ―decades‖ look at the security issue, we see competition for natural resources giving way to Cold War ideological containment and deterrence, itself giving way to non-state terrorism and extremism. While we continue to defend against these threats, we are faced with even greater security challenges that inextricably tie economic, food and human security together and where the flash points may not provide clearly discernable causes, as they will be intrinsically tied to climate change. Several scientific reports have revealed that the modest development gains that can be realized by some regions could be reversed by climate change. This means that climate change is not just a long-term environmental threat as was widely believed, but an economic and developmental disaster that is unfolding. As such, addressing climate change has become central to the development and poverty reduction by the World Bank and other financial institutions. In Latin America, poorer countries and communities, such as those found in Central America, will suffer the hardest because of weaker resilience and greater reliance on climatesensitive sectors such as agriculture. The US should attempt to deliver capability to assist these states to deal with the effects of climate change.
Resumo:
Climate change is expected to have wide-ranging impacts on urban areas and creates additional challenges for sustainable development. Urban areas are inextricably linked with climate change, as they are major contributors to it, while also being particularly vulnerable to its impacts. Climate change presents a new challenge to urban areas, not only because of the expected rises in temperature and sea-level, but also the current context of failure to fully address the institutional barriers preventing action to prepare for climate change, or feedbacks between urban systems and agents. Despite the importance of climate change, there are few cities in developing countries that are attempting to address these issues systematically as part of their governance and planning processes. While there is a growing literature on the risks and vulnerabilities related to climate change, as yet there is limited research on the development of institutional responses, the dissemination of relevant knowledge and evaluation of tools for practical planning responses by decision makers at the city level. This thesis questions the dominant assumptions about the capacity of institutions and potential of adaptive planning. It argues that achieving a balance between climate change impacts and local government decision-making capacity is a vital for successful adaptation to the impacts of climate change. Urban spatial planning and wider environmental planning not only play a major role in reducing/mitigating risks but also have a key role in adapting to uncertainty in over future risk. The research focuses on a single province - the biggest city in Vietnam - Ho Chi Minh City - as the principal case study to explore this argument, by examining the linkages between urban planning systems, the structures of governance, and climate change adaptation planning. In conclusion it proposes a specific framework to offer insights into some of the more practical considerations, and the approach emphasises the importance of vertical and horizontal coordination in governance and urban planning.
Resumo:
During the 1980s, the North Sea plankton community underwent a well-documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher trophic-level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher trophic-level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959–1980 and 1989–2010. Twenty-three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony of Calanus helgolandicus and Para-pseudocalanus spp appeared to be driven by changes in SST synchrony. This study is one of few to document alterations of synchrony and climate-change impacts on synchrony. We discuss why climate-change impacts on synchrony may well be more common and consequential than previously recognized.
Resumo:
During the 1980s, the North Sea plankton community underwent a well-documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher trophic-level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher trophic-level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959–1980 and 1989–2010. Twenty-three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony of Calanus helgolandicus and Para-pseudocalanus spp appeared to be driven by changes in SST synchrony. This study is one of few to document alterations of synchrony and climate-change impacts on synchrony. We discuss why climate-change impacts on synchrony may well be more common and consequential than previously recognized.
Resumo:
Individual actions to avoid, benefit from, or cope with climate change impacts partly shape adaptation; much research on adaptation has focused at the systems level, overlooking drivers of individual responses. Theoretical frameworks and empirical studies of environmental behavior identify a complex web of cognitive, affective, and evaluative factors that motivate stewardship. We explore the relationship between knowledge of, and adaptation to, widespread, climate-induced tree mortality to understand the cognitive (i.e., knowledge and learning), affective (i.e., attitudes and place attachment), and evaluative (i.e., use values) factors that influence how individuals respond to climate-change impacts. From 43 semistructured interviews with forest managers and users in a temperate forest, we identified distinct responses to local, climate-induced environmental changes that we then categorized as either behavioral or psychological adaptations. Interviewees developed a depth of knowledge about the dieback through a combination of direct, place-based experiences and indirect, mediated learning through social interactions. Knowing that the dieback was associated with climate change led to different adaptive responses among the interviewees, although knowledge alone did not explain this variation. Forest users reported psychological adaptations to process negative attitudes; these adaptations were spurred by knowledge of the causes, losses of intangible values, and impacts to a species to which they held attachment. Behavioral adaptations exclusive to a high level of knowledge included actions such as using the forests to educate others or changing transportation behaviors to reduce personal energy consumption. Managers integrated awareness of the dieback and its dynamics across spatial scales into current management objectives. Our findings suggest that adaptive management may occur from the bottom up, as individual managers implement new practices in advance of policies. As knowledge of climate-change impacts in local environments increases, resource users may benefit from programs and educational interventions that facilitate coping strategies.
Resumo:
One of the main challenges urban areas, and more particularly the compact ones, are facing is their adaptation to climate change. In recent years, is had been recognized that a more ecosystem approach to spatial planning can play a critical role in meeting these challenges. Green Infrastructure (GI) and its integration in spatial planning emerges as one of the most appropriate and effective ways to improve microclimate and tackle the impacts of climate change and mainly the Urban Heat Island (UHI) effect. This paper initially attempts to clarify the term GI and portrays its benefits and its role as an important spatial planning tool to fulfill different environmental, social and economic needs of urban areas. Then, the paper proceeds to an empirical evaluation of the role of GI in reducing the vulnerability to UHI effect in a compact urban area of the city of Thessaloniki. For this reason, a simple methodology is developed with a twofold purpose: to recognize the risks posed by climate change and especially UHI and to assess the potential offered by available in a compact area GI assets as well as by their redesign in order to maximize their contribution to climate change adaptation.
Resumo:
Marine ecosystems are facing a diverse range of threats, including climate change, prompting international efforts to safeguard marine biodiversity through the use of spatial management measures. Marine Protected Areas (MPAs) have been implemented as a conservation tool throughout the world, but their usefulness and effectiveness is strongly related to climate change. However, few MPA programmes have directly considered climate change in the design, management or monitoring of an MPA network. Under international obligations, EU, UK and national targets, Scotland has developed an MPA network that aims to protect marine biodiversity and contribute to the vision of a clean, healthy and productive marine environment. This is the first study to critically analyse the Scottish MPA process and highlight areas which may be improved upon in further iterations of the network in the context of climate change. Initially, a critical review of the Scottish MPA process considered how ecological principles for MPA network design were incorporated into the process, how stakeholder perceptions were considered and crucially what consideration was given to the influence of climate change on the eventual effectiveness of the network. The results indicated that to make a meaningful contribution to marine biodiversity protection for Europe the Scottish MPA network should: i) fully adopt best practice ecological principles ii) ensure effective protection and iii) explicitly consider climate change in the management, monitoring and future iterations of the network. However, this review also highlighted the difficulties of incorporating considerations of climate change into an already complex process. A series of international case studies from British Columbia, Canada; central California, USA; the Great Barrier Reef, Australia and the Hauraki Gulf, New Zealand, were then conducted to investigate perceptions of how climate change has been considered in the design, implementation, management and monitoring of MPAs. The key lessons from this study included: i) strictly protected marine reserves are considered essential for climate change resilience and will be necessary as scientific reference sites to understand climate change effects ii) adaptive management of MPA networks is important but hard to implement iii) strictly protected reserves managed as ecosystems are the best option for an uncertain future. This work provides new insights into the policy and practical challenges MPA managers face under climate change scenarios. Based on the Scottish and international studies, the need to facilitate clear communication between academics, policy makers and stakeholders was recognised in order to progress MPA policy delivery and to ensure decisions were jointly formed and acceptable. A Delphi technique was used to develop a series of recommendations for considering climate change in Scotland’s MPA process. The Delphi participant panel was selected for their knowledge of the Scottish MPA process and included stakeholders, policy makers and academics with expertise in MPA research. The results from the first round of the Delphi technique suggested that differing views of success would likely influence opinions regarding required management of MPAs, and in turn, the data requirements to support management action decisions. The second round of the Delphi technique explored this further and indicated that there was a fundamental dichotomy in panellists’ views of a successful MPA network depending upon whether they believed the MPAs should be strictly protected or allow for sustainable use. A third, focus group round of the Delphi Technique developed a feature-based management scenario matrix to aid in deciding upon management actions in light of changes occurring in the MPA network. This thesis highlights that if the Scottish MPA network is to fulfil objectives of conservation and restoration, the implications of climate change for the design, management and monitoring of the network must be considered. In particular, there needs to be a greater focus on: i) incorporating ecological principles that directly address climate change ii) effective protection that builds resilience of the marine and linked social environment iii) developing a focused, strong and adaptable monitoring framework iv) ensuring mechanisms for adaptive management.