999 resultados para p res
Resumo:
Objectives: To characterize the interaction of 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide Hydrochloride (EDC) with dentin matrix and its effect on the resin-dentin bond. Methods: Changes to the stiffness of demineralized dentin fragments treated with EDC/N-hydroxysuccinimide (NHS) in different solutions were evaluated at different time points. The resistance against enzymatic degradation was indirectly evaluated by ultimate tensile strength (UTS) test of demineralized dentin treated or not with EDC/NHS and subjected to collagenase digestion. Short- and long-term evaluations of the strength of resin-dentin interfaces treated with EDC/NHS for 1 h were performed using microtensile bond strength (mu TBS) test. All data (MPa) were individually analyzed using ANOVA and Tukey HSD tests (alpha = 0.05). Results: The different exposure times significantly increased the stiffness of dentin (p < 0.0001, control-5.15 and EDC/NHS-29.50), while no differences were observed among the different solutions of EDC/NHS (p = 0.063). Collagenase challenge did not affect the UTS values of EDC/NHS group (6.08) (p > 0.05), while complete degradation was observed for the control group (p = 0.0008, control-20.84 and EDC/NHS-43.15). EDC/NHS treatment did not significantly increase resin-dentin mu TBS, but the values remained stable after 12 months water storage (p < 0.05). Conclusions: Biomimetic use of EDC/NHS to induce exogenous collagen cross-links resulted in increased mechanical properties and stability of dentin matrix and dentin-resin interfaces. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 94B: 250-255, 2010.
Resumo:
Hydroxyapatite (HA), a stable and biocompatible material for bone tissue therapy, may present a variable stoichiometry and accept a large number of cationic substitutions. Such substitutions may modify the chemical activity of HA surface, with possible impact on biocompatibility. In this work, we assessed the effects of calcium substitution with diverse divalent cations (Pb(2+), Sr(2+), Co(2+), Zn(2+), Fe(2+), Cu(2+), or Mg(2+)) on the biological behavior of HA. Physicochemical analyses revealed that apatite characteristics related to crystallinity and calcium dissolution/uptake rates are very sensitive to the nature of cationic substitution. Cytocompatibility was evaluated by mitochondrial activity, membrane integrity, cell density, proapoptotic potential, and adhesion tests. With the exception of Zn-HA, all the substituted HAs induced some level of apoptosis. The highest apoptosis levels were observed for Mg-HA and Co-HA. Cu-HA was the only material to impair simultaneously mitochondrial activity, membrane integrity, and cell density. The highest relative cell densities after exposure to the modified HAs were observed for Mg-HA and Zn-HA, while Co-HA significantly improved cell adhesion onto HA surface. These results show that changes on surface dissolution caused by cationic substitution, as well as the increase of metal species released to biological media, were the main responsible factors related to alterations on HA biocompatibility. (C) 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 98A: 351-358, 2011.
Resumo:
To histomorphometrically investigate the repair of critical size defects (CSDs) and bone augmentation in cranial walls using block of sintered bovine-derived anorganic bone (sBDAB) graft. Forty guinea-pigs were divided into test (n=20) and CSD control (n=20) groups. In each animal, a full-thickness bone defect with 9.5 mm diameter was made in the frontal bone. The defects were filled with an sBDAB block soaked in blood in the test group and with blood clot in the CSD control group. The skulls were collected at 0 h (n=2) and 30, 90 and 180 days (n=6/group and period) postoperatively. The volume density and total volume of newly formed bone, sBDAB, blood vessels and connective tissue, vertical thickness of removed bone plug, sBDAB block and graft area were evaluated. The vertical thickness of the adapted sBDAB block was 3.8 times higher than that of the removed bone plug and did not show significant difference between periods, filling in average 29.8% of the total graft region. The sBDAB block exhibited complete osseointegration with the borders of the defect at 90 days. At 90 and 180 days, the vertical thickness of the graft was 279% in the average, and the total volume of bone augmentation was, respectively, 78.8% and 148.5% higher compared with the removed bone plug. The defects of the CDS control group showed limited osteogenesis and filling by connective tissue plus tegument. The sBDAB block can be used to promote repair of CSDs and bone augmentation in the craniomaxillofacial region, due to its good osteoconductive and slow resorptive properties. To cite this article:Cestari TM, Granjeiro JM, de Assis GF, Garlet GP, Taga R. Bone repair and augmentation using block of sintered bovine-derived anorganic bone graft in cranial bone defect model.Clin. Oral Impl. Res. 20, 2009; 340-350.doi: 10.1111/j.1600-0501.2008.01659.x.
Resumo:
The objectives of this study were to investigate the presence and distribution of substance P and neurokinin 1 receptor in oral premalignant epithelium and their relation with the presence of dysplasia, and to analyze whether the expression of substance P can be considered an early oncogenic event in oral carcinogenesis. Substance P and neurokinin I receptor expression was immunohistochemically studied in 83 oral carcinomas and adjacent nontumor epithelia. The presence and degree of epithelial dysplasia was assessed according to WHO criteria. The nuclear, cytoplasmic, and membrane expression of substance P and the cytoplasmic and membrane expression of neurokinin 1 receptor were assessed in tumor and adjacent non-tumor epithelium. Nuclear and cytoplasmic expression of substance P in non-tumor epithelium was significantly associated with the presence of epithelial dysplasia (p<0.001) and carcinoma in. situ (p=0.021). Nuclear, cytoplasmic, and membrane expressions of substance P in non-tumor epithelium were significantly (p<0.001) associated with its expression in the corresponding tumor. These findings suggest that substance P plays a role in early oral carcinogenesis by promoting the proliferation and growth of premalignant fields.
Resumo:
Objective: To investigate the presence and distribution of substance P (SP) and neurokinin I receptor (NK-IR) in oral squamous cell carcinoma (OSCC) and their relationship with proliferation. Patients and Methods: Ninety OSCCs from 73 patients were immunohistochemically analyzed using monoclonal antibodies against SP, NK-IR and Ki-67 in a case and control study. Results: Seventy-one percent (n=49) of cases expressed SP on tumour cell membrane, 81.3% (n=69) in cytoplasm, 39.4% (n=28) in nucleus, 81.6% (n=71) in infiltrating lymphocytes, and 58.1% (n=43) in peritumoural or intratumoural blood vessels; 14% (n=12) of cases expressed NK-1R on tumour cell membrane, 50% (n=43) in cytoplasm, 48.3% (n=42) in infiltrating lymphocytes and 22.5% (n=18) in tumour blood vessels. All cases expressed Ki-67, which was expressed in >25% of tumour cells in 79.8% of cases (n=63). Direct significant associations were observed in SP expression between different tissue levels (p<0.01), between SP and NK-IR tumour cell membrane expression (p<0.01), and between joint,SP and NK-IR expression in tumour cell cytoplasm and a higher expression of Ki-67 (p<0.05). Conclusion: The ubiquitous presence of SP strongly suggests a role for SP/NK-1R complex in tumour development and progression and possibly for NK-IR antagonists, such as L-773060, in the management of patients with oral cancer.
Resumo:
Background: Fibroblasts are considered important cells in periodontitis. When challenged by different agents, they respond through the release of cytokines that participate in the inflammatory process. The aim of this study is to evaluate and compare the expression and production of macrophage inflammatory protein (MIP)-1 alpha, stromal-derived factor (SDF)-1, and interleukin (IL)-6 by human cultured periodontal ligament and gingival fibroblasts challenged with lipopolysaccharide (LPS) from Porphyromonas gingivalis. Methods: Fibroblasts were cultured from biopsies of gingival tissue and periodontal ligament of the same donors and used on the fourth passage. After confluence in 24-well plates, the culture medium alone (control) or with 0.1 to 10 mu g/ml of LPS from P. gingivalis was added to the wells, and after 1, 6, and 24 hours, the supernatant and the cells were collected and analyzed by enzyme-linked immunosorbent assay and real-time polymerase chain reaction, respectively. Results: MIP-1 alpha, SDF-1, and IL-6 protein production was significantly greater in gingival fibroblasts compared to periodontal ligament fibroblasts. IL-6 was upregulated in a time-dependent manner, mainly in gingival fibroblasts (P<0.05), which secreted more MIP-1 alpha in the lowest concentration of LPS used (0.1 mu g/ml). In contrast, a basal production of SDF-1 that was inhibited with the increase of LPS concentration was detected, especially after 24 hours (P<0.05). Conclusion: The distinct ability of the gingival and periodontal ligament fibroblasts to secrete MIP-1 alpha, SDF-1, and IL-6 emphasizes that these cells may differently contribute to the balance of cytokines in the LPS-challenged periodontium. J Periodontol 2010;81:310-317.
Resumo:
The purpose of this in vitro study was to analyze the stress distribution on components of a mandibular-cantilevered implant-supported prosthesis with frameworks cast in cobalt-chromium (Co-Cr) or palladium-silver (Pd-Ag) alloys, according to the cantilever length. Frameworks were fabricated on (Co-Cr) and (Pd-Ag) alloys and screwed into standard abutments positioned on a master-cast containing five implant replicas. Two linear strain gauges were fixed on the mesial and distal aspects of each abutment to capture deformation. A vertical static load of 100 N was applied to the cantilever arm at the distances of 10, 15, and 20 mm from the center of the distal abutment and the absolute values of specific deformation were recorded. Different patterns of abutment deformation were observed according to the framework alloy. The Co-Cr alloy framework resulted in higher levels of abutment deformation than the silver-palladium alloy framework. Abutment deformation was higher with longer cantilever extensions. Physical properties of the alloys used for framework interfere with abutment deformations patterns. Excessively long cantilever extensions must be avoided. To cite this article:Jacques LB, Moura MS, Suedam V, Souza EAC, Rubo JH. Effect of cantilever length and framework alloy on the stress distribution of mandibular-cantilevered implant-supported prostheses.Clin. Oral Impl. Res. 20, 2009; 737-741.doi: 10.1111/j.1600-0501.2009.01712.x.
Resumo:
In cantilevered implant-supported complete prosthesis, the abutments` different heights represent different lever arms to which the abutments are subjected resulting in deformation of the components, which in turn transmit the load to the adjacent bone. The purpose of this in vitro study was to quantitatively assess the deformation of abutments of different heights in mandibular cantilevered implant-supported complete prosthesis. A circular steel master cast with five perforations containing implant replicas (O3.75 mm) was used. Two groups were formed according to the types of alloy of the framework (CoCr or PdAg). Three frameworks were made for each group to be tested with 4, 5.5 and 7 mm abutments. A 100 N load was applied at a point 15 mm distal to the center of the terminal implant. Readings of the deformations generated on the mesial and distal aspects of the abutments were obtained with the use of strain gauges. Deformation caused by tension and compression was observed in all specimens with the terminal abutment taking most of the load. An increase in deformation was observed in the terminal abutment as the height was increased. The use of an alloy of higher elastic modulus (CoCr) also caused the abutment deformation to increase. Abutment`s height and framework alloy influence the deformation of abutments of mandibular cantilevered implant-supported prosthesis. To cite this article:Suedam V, Capello SouzaEA, Moura MS, Jacques LB, Rubo JH. Effect of abutment`s height and framework alloy on the load distribution of mandibular cantilevered implant-supported prosthesis. Clin. Oral Impl. Res. 20, 2009; 196-200.doi: 10.1111/j.1600-0501.2008.01609.x.
Resumo:
This study evaluated the cytotoxic effects of a carbamide peroxide (CP) bleaching gel at different concentrations on odontoblast-like cells. Immortalized cells of the MDPC-23 cell line (30,000 cells/cm(2)) were incubated for 48 h. The bleaching gel was diluted in DMEM culture medium originating extracts with different CP concentrations. The amount (mu g/mL) of hydrogen peroxide (H(2)O(2)) released from each extract was measured by the leukocrystal violet/horseradish peroxidase enzyme assay. Five groups (n = 10) were formed according to the CP concentration in the extracts: G1-DMEM (control); G2-0.0001 % CP (0.025 mu g/mL H(2)O(2)); G3-0.001% CP (0.43 mu g/mL H(2)O(2)); G4-0.01% CP (2.21 mu g/mL H(2)O(2)); and G5-0.1 % CP (29.74 mu g/mL H(2)O(2)). MDPC-23 cells were exposed to the bleaching gel extracts for 60 min and cell metabolism was evaluated by the NITT assay. Data were analyzed statistically by one-way ANOVA and Tukey`s test (alpha = 0.05). Cell morphology was examined by scanning electron microscopy. The percentages of viable cells were as follows: G1, 100%; G2, 89.41%; G3, 82.4%; G4, 61.5%; and G5, 23.0%. G2 and G3 did not differ significantly (p > 0.05) from G1. The most severe cytotoxic effects were observed in G3 and G4. In conclusion, even at low concentrations, the CP gel extracts presented cytotoxic effects. This cytotoxicity was dose-dependent, and the 0.1% CP concentration caused the most intense cytopathic effects to the MDPC-23 cells. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 9013: 907-912, 2009
Resumo:
Objectives The aims of this research were to evaluate the efficacy of a bioactive glass-ceramic (Biosilicate (R)) and a bioactive glass (Biogran (R)) placed in dental sockets in the maintenance of alveolar ridge and in the osseointegration of Ti implants. Material and methods Six dogs had their low premolars extracted and the sockets were implanted with Biosilicate (R), Biogran (R) particles, or left untreated. After the extractions, measurements of width and height on the alveolar ridge were taken. After 12 weeks a new surgery was performed to take the final ridge measurements and to insert bilaterally three Ti implants in biomaterial-implanted and control sites. Eight weeks post-Ti implant placement block biopsies were processed for histological and histomorphometric analysis. The percentages of bone-implant contact (BIC), of mineralized bone area between threads (BABT), and of mineralized bone area within the mirror area (BAMA) were determined. Results The presence of Biosilicate (R) or Biogran (R) particles preserved alveolar ridge height without affecting its width. No significant differences in terms of BIC, BAMA, and BABT values were detected among Biosilicate (R), Biogran (R), and the non-implanted group. Conclusions The results of the present study indicate that filling of sockets with either Biosilicate (R) or Biogran (R) particles preserves alveolar bone ridge height and allows osseointegration of Ti implants. To cite this article:Roriz VM, Rosa AL, Peitl O, Zanotto ED, Panzeri H, de Oliveira PT. Efficacy of a bioactive glass-ceramic (Biosilicate (R)) in the maintenance of alveolar ridges and in osseointegration of titanium implants.Clin. Oral Impl. Res. 21, 2010; 148-155.doi: 10.1111/j.1600-0501.2009.01812.x.
Resumo:
The aim of this study was to evaluate the development of the osteoblastic phenotype in human alveolar bone-derived cells grown on collagen type I-coated titanium (Ti) surface (Col-Ti) obtained by plasma deposition acrylic acid grafting compared with machined Ti (M-Ti). Osteoblastic cells were cultured until subconfluence and subcultured on Col-Ti and M-Ti for periods of up to 21 days. Cultures grown on Col-Ti and M-Ti exhibited similar cell morphology. Cell adhesion, total protein content, and alkaline phosphatase (ALP) activity were not affected by Ti surface modification in all evaluated periods. Growth analyses indicated that there were significantly more cells in cultures grown on Col-Ti at day 3. Runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteoprotegerin (OPG) mRNA expression of cells subcultured on Col-Ti was higher, whereas collagen type I (COL) was lower compared with M-Ti. Ti surface modification neither affected the osteocalcin (OC), ALP and receptor activator of NF-kappa B ligand (RANKL) mRNA expression nor the calcium content extracted from mineralized matrix. These results demonstrated that Col-Ti favours cell growth during the proliferative phase (day 3) and osteoblastic differentiation, as demonstrated by changes in mRNA expression profile during the matrix mineralization phase (day 14), suggesting that this Ti surface modification may affect the processes of bone healing and remodelling. To cite this article:Assis AF, Beloti MM, Crippa GE, de Oliveira PT, Morra M, Rosa AL. Development of the osteoblastic phenotype in human alveolar bone-derived cells grown on a collagen type I-coated titanium surface.Clin. Oral Impl. Res. 20, 2009; 240-246.doi: 10.1111/j.1600-0501.2008.01641.x.
Resumo:
In the present study we characterized titanium (Ti) surfaces submitted to different treatments and evaluated the response of osteoblasts derived from human alveolar bone to these surfaces. Five different surfaces were evaluated: ground (G), ground and chemical etched (G1-HF for 60 s), sand blasted (SB-Al2O3 particles 65 pm), sand blasted and chemical etched (SLA1-HF for 60 s and SLA2-HF for 13 s). Surface morphology was evaluated under SEM and roughness parameters by contact scanning instrument. The presence of Al2O3 was detected by EDS and the amount calculated by digital analyses. Osteoblasts, were cultured on these surfaces and it was evaluated: cell adhesion, proliferation, and viability, alkaline phosphatase activity, total protein content, and matrix mineralization formation. Physical and chemical treatments produced very different surface morphologies. Al2O3 residues were detected on SB and SLA2 surfaces. Only matrix mineralization formation was affected by different surface treatments, being increased on rough surface (SLA1) and reduced on surface with high amount of Al2O3 residues (SB). On the basis of these findings, it is possible to conclude that high concentration of residual Al2O3 negatively interfere with the process of matrix mineralization formation in contact with Ti implant surfaces. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 87A: 588-597, 2008
Resumo:
In the course of attempting to define the bone ""secretome"" using a signal-trap screening approach, we identified a gene encoding a small membrane protein novel to osteoblasts. Although previously identified in silico as ifitm5, no localization or functional studies had been undertaken on this gene. We characterized the expression patterns and localization of this gene in vitro and in vivo and assessed its role in matrix mineralization in vitro. The bone specificity and shown role in mineralization led us to rename the gene bone restricted ifitm-like protein (Bril). Bril encodes a 14.8-kDa 1.34 arnino acid protein with two transmembrane domains. Northern blot analysis showed bone-specific expression with no expression in other embryonic or adult tissues. In situ hybridization and immunohistochemistry in mouse embryos showed expression localized on the developing bone. Screening of cell lines showed Bril expression to be highest in osteoblasts, associated with the onset of matrix maturation/mineralization, suggesting a role in bone formation. Functional evidence of a role in mineralization was shown by adenovirus-mediated Brit overexpression and lentivirus-mediated Bril shRNA knockdown in vitro. Elevated Bril resulted in dose-dependent increases in mineralization in UMR106 and rat primary osteoblasts. Conversely, knockdown of Bril in MC3T3 osteoblasts resulted in reduced mineralization. Thus, we identified Bril as a novel osteoblast protein and showed a role in mineralization, possibly identifying a new regulatory pathway in bone formation.
Resumo:
Background: There are no reported studies comparing different parameter settings of the CO(2) laser and irradiation direction considering their effect on the morphology of radicular dentine surface. Purpose: To evaluate the alterations of radicular dentine (cervical, middle, and apical thirds) irradiated with CO(2) laser at different potencies and irradiation directions. Study Design: Roots of 35 canines were prepared and randomly distributed according to the laser potency: GI: no laser treatment (control) (n = 5); GII, 2 W (n = 10); GIII: 4 W (n = 10); GIV: 6 W (n = 10). Each group (excepting GI) was divided in two subgroups according to the irradiation distance (n = 5): (A) parallel and (B) perpendicular to the root canal walls. The roots were splited longitudinally and analyzed by scanning electron microscopy in a qualiquatitative way. The scores were submitted to Kruskal-Wallis and Dunn`s tests. Results: No significant statistical differences were observed among root canal thirds (P > 0.05). The specimens irradiated with 2 W were statistically different (P < 0.05) from those irradiated with 4 and 6 W, which were statistically similar between themselves (P > 0.05). With 2, 4, and 6 W at in parallel irradiation and 2 W in perpendicular direction, the surface showed a fissured aspect. With 4 W in perpendicular direction and 6 W in parallel and perpendicular direction, surface was modified by laser action and exhibited fused areas. Conclusions: The intensity of the effects is dependent on the laser-irradiation dosimetries. Alterations were more intense when higher parameters were used. Microsc. Res. Tech. 72:737-743, 2009. (C) 2009 Wiley-Liss, Inc.