994 resultados para outcrop
Resumo:
The Late Miocene-Early Pliocene paleoclimatic history has been evaluated for a deep drilled sediment sequence at Deep Sea Drilling Project Site 281 and a shallow water marine sediment sequence at Blind River, New Zealand, both of which lay within the Subantarctic water mass during the Late Miocene. A major, faunally determined, cooling event within the latest Miocene at Site 281 and Blind River coincides with oxygen isotopic changes in benthonic foraminiferal composition at DSDP Site 284 considered by Shackleton and Kennett (1975) to indicate a significant increase in Antarctic ice sheet volume. However, at Site 281 benthonic foraminiferal oxygen isotopic changes do not record such a large increase in Antarctic ice volume. It is possible that the critical interval is within an unsampled section (no recovery) in the latest Miocene. Two benthonic oxygen isotopic events in the Late Miocene (0.5 ? and 1 ? in the light direction) may be useful as time-stratigraphic markers. A permanent, negative, carbon isotopic shift at both Site 281 and Blind River allows precise correlations to be made between the two sections and to other sites in the Pacific region. Close interval sampling below the carbon shift at Site 281 revealed dramatic fluctuations in surface-water temperatures prior to a latest Miocene interval of refrigeration (Kapitean) and a strong pulse of dissolution between 6.6 and 6.2 +/- 0.1 m.y. which may be related to a fundamental geochemical change in the oceans at the time of the carbon shift (6.3-6.2 m.y.). No similar close interval sampling at Blind River was possible because of a lack of outcrop over the critical interval. Paleoclimatic histories from the two sections are very similar. Surface water temperatures and Antarctic ice-cap volume appear to have been relatively stable during the late Middle-early Late Miocene (early-late Tongaporutuan). By 6.4 m.y. cooler conditions prevailed at Site 281. Between 6.3 and 6.2 -+ 0.1 m.y. the carbon isotopic shift occurred followed, within 100,000 yr, by a distinct shallowing of water depths at Blind River. The earliest Pliocene (Opoitian) is marked by increasing surface-water temperatures.
Resumo:
The Norian Steinmergel-Keuper (SMK) represents a low-latitude cyclically-bedded playa system of the Mid-German Basin. We investigated a drilling site (core Morsleben) and sections from marginal positions. Dolomite/red mudstone beds form rhythmic alternations that were associated with varying monsoon activity. Hence, low K/Al ratios of dolomite beds suggest increased chemical weathering of the crystalline hinterland and therefore increased monsoonal rainfall. High K/Al ratios in red mudstone beds reflect increased physical weathering of the hinterlands during dryer periods. Dolomite layers reflect the lake stage (maximum monsoon) while red mudstones indicate the dry phase (minimum monsoon) of the playa cycle. We distinguished five major types of cyclic facies alternations, representing specific facies zones in the playa system. We have implemented spectrophotometry as a tool for high-resolution cyclostratigraphy. The dense sampling increment (up to 1 cm) allows for the recognition of all orbital frequencies. Sediment colour profiles reveal striking hierarchical cycles from semi-precession (SP, 99 kyr) over precession (P, 19.8 kyr) and obliquity (O, 36 kyr) to eccentricity (E1-2 109 kyr; E3, 413 kyr). A significant about 2 Myr-signal is attributed to the longer-term eccentricity E4. One monsoonal (precession) cycle includes two carbonate precipitation events. We propose that stratified mudstone and red mudstone are associated with maximum and minimum monsoon during the transition of the solstices in perihelion and aphelion, respectively. The two carbonate precipitation events were most likely created when equinoxes were in perihelion and aphelion, respectively. A sedimentary semi-precession response cycle is a novel finding for the Norian strata. The obliquity signal is attributed to incoming atmospheric moisture from the northeast of the SMK basin. The E4 cycle controls lake-level changes over long times. Apparently, E4 is responsible whether or not a threshold value is crossed. Bundles of 109 kyr and 413 kyr in red mudstones suggest a dry system with reduced monsoonal activity. In contrast, humid periods reveal thick layers of dolomite beds, indicating that during those intervals the monsoonal activity was strong enough to prevent the playa system from drying out completely.
Resumo:
Continental climate evolution of Central Europe has been reconstructed quantitatively for the last 45 million years providing inferred data on mean annual temperature and precipitation, and winter and summer temperatures. Although some regional effects occur, the European Cenozoic continental climate record correlates well with the global oxygen isotope record from marine environments. During the last 45 million years, continental cooling is especially pronounced for inferred winter temperatures but hardly observable from summer temperatures. Correspondingly, Cenozoic cooling in Central Europe is directly associated with an increase of seasonality. In contrast, inferred Cenozoic mean annual precipitation remained relatively stable, indicating the importance of latent heat transport throughout the Cenozoic. Moreover, our data support the concept that changes in atmospheric CO2 concentrations, although linked to climate changes, were not the major driving force of Cenozoic cooling.
Resumo:
Neogene deposits from Belorado (Province de Burgos, Spain) in the NE border of the Duero Basin have been analyzed. The palynologic analysis of the samples suggests the existence of arboreal landscapes associated with the herbaceous cover creating belts of vegetation around restricted aquatic areas (marshy and lacustrine environments). The characteristics of the palynomorph assemblages allow to define a warm-template climate with strong seasons. The age of these deposits could be included in the middle Miocene (Aragonian).