985 resultados para organic fertilizer addition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Restoring the native vegetation is the most effective way to regenerate soil health. Under these conditions, vegetation cover in areas having degraded soils may be better sustained if the soil is amended with an external source of organic matter. The addition of organic materials to soils also increases infiltration rates and reduces erosion rates; these factors contribute to an available water increment and a successful and sustainable land management. The goal of this study was to analyze the effect of various organic amendments on the aggregate stability of soils in afforested plots. An experimental paired-plot layout was established in southern of Spain (homogeneous slope gradient: 7.5%; aspect: N170). Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. The vegetation was planted in a grid pattern with 0.5 m between plants in each plot. During the afforestation process the soil was tilled to 25 cm depth from the surface. Soil from the afforested plots was sampled in: i) 6 months post-afforestation; ii) 12 months post-afforestation; iii) 18 months post-afforestation; and iv) 24 months post-afforestation. The sampling strategy for each plot involved collection of 4 disturbed soil samples taken from the surface (0–10 cm depth). The stability of aggregates was measured by wet-sieving. Regarding to soil aggregate stability, the percentage of stable aggregates has increased slightly in all the treatments in relation to control. Specifically, the differences were recorded in the fraction of macroaggregates (≥ 0.250 mm). The largest increases have been associated with straw mulch, pinus mulch and sludge. Similar results have been registered for the soil organic carbon content. Independent of the soil management, after six months, no significant differences in microaggregates were found regarding to the control plots. These results showed an increase in the stability of the macroaggregates when soil is amended with sludge, pinus mulch and straw much. This fact has been due to an increase in the number cementing agents due to: (i) the application of pinus, straw and sludge had resulted in the release of carbohydrates to the soil; and thus (ii) it has favored the development of a protective vegetation cover, which has increased the number of roots in the soil and the organic contribution to it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foram comparados a biomassa, a composição química e o valor nutritivo da macrófita aquática emersa S. alterniflora em um rio impactado por descargas de efluentes domésticos (Rio Guaú) e em um rio bem conservado (Rio Itanhaém). Amostras de S. alterniflora, água e sedimento foram coletadas nos dois rios, em novembro de 2001. O rio Guaú apresentou as maiores concentrações de N-Total e P-Total na água (415 e 674 µg.L-1, respectivamente) e sedimento (0,25 e 0,20% de Massa Seca, respectivamente), em relação a água (NT = 105 µg.L-1; PT= 20 µg.L-1) e sedimento (NT = 0,12% MS; PT = 0,05% MS) do rio Itanhaém. A biomassa aérea (316 g MS.m-2) e subterrânea (425 g MS.m-2) de S. alterniflora no rio Guaú foram significativamente maiores do que no rio Itanhaém (146 e 115 g MS.m-2). Além disto, os valores de NT, proteínas, PT, lipídios e carboidratos solúveis foram significativamente maiores na biomassa de S. alterniflora no rio Guaú. Por outro lado, a fração de parede celular e os teores de polifenóis foram maiores na biomassa de S. alterniflora no rio Itanhaém. Concluiu-se que o lançamento de efluentes domésticos em corpos d'água pode aumentar a biomassa e alterar a composição química de S. alterniflora. A maior disponibilidade de N e P no rio Guaú, provavelmente, é a causa dos maiores valores de biomassa, NT, PT, lipídeos e carboidratos solúveis em S. alterniflora neste rio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the risk of groundwater contamination from organic substances in sewage sludge from wastewater treatment stations was evaluated in its worst case. The sewage sludge was applied as fertilizer in corn culture, prioritizing the substances for monitoring. The assessing risk took place in a Typic Distrophic Red Latossol (TDRL) area, in the county district of Jaguariúna, SP. The simulators CMLS-94 and WGEN were used to evaluate the risk of twenty-eight organic substances in sewage sludge to leach to groundwater. The risk of groundwater contamination was accomplished for a single sludge dose application in a thousand independent and equally probable years, simulated to esteem the substances leaching in one year after the application date of the sludge. It is presented the substances that should be priorly monitored in groundwater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coffea sp. is cultivated in large areas, using both conventional and organic management. However, information about the sustainability of these two management systems is still deficient. The objective of the present study was to evaluate the physical properties of soil cultivated with Conilon coffee (C. canephora) under organic and conventional management. Two areas cultivated with Conilon coffee (under organic and conventional management) and a fragment of Atlantic forest, used as a reference, were selected for the experiment. Soil granulometry, hydraulic conductivity, water retention curve, resistance to penetration, porosity, optimal hydric interval, and other physical characteristics were measured at depths of 0 to 10 and 10 to 20 cm. The data was submitted to multivariate and descriptive statistical analyses. Higher similarity was observed between the soil cultivated with Conilon coffee under organic management and the Atlantic forest soil. Soil resistance to penetration at 10, 30, 100, 500 and 1500 kPa, macro porosity, density and total porosity were the main physical properties that differentiated both management systems studied. The non-use of agricultural machinery and the addition of organic matter may be the main reasons for higher soil sustainability observed under organic management when compared with the conventional system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil organic matter (SOM) is important to fertility, since it performs several functions such as cycling, water and nutrient retention and soil aggregation, in addition to being an energy requirement for biological activity. This study proposes new trends to the Embrapa, Walkley-Black, and Mebius methods that allowed the determination of SOM by spectrophotometry, increasing functionality. The mass of 500 mg was reduced to 200 mg, generating a mean of 60 % saving of reagents and a decrease of 91 % in the volume of residue generated for the three methods without compromising accuracy and precision. We were able to optimize conditions for the Mebius method and establish the digestion time of maximum recovery of SOM by factorial design and response surface. The methods were validated by the estimate of figures of merits. Between the methods investigated, the optimized Mebius method was best suited for determining SOM, showing near 100 % recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: The study of labile carbon fractions (LCF) provides an understanding of the behavior of soil organic matter (SOM) under different soil management systems and cover crops. The aim of this study was to assess the effect of different soil management systems with respect to tillage, cover crop and phosphate fertilization on the amount of the LCF of SOM. Treatments consisted of conventional tillage (CT) and no-tillage (NT) with millet as the cover crop and a no-tillage system with velvet bean at two phosphorus dosages. Soil samples were collected and analyzed for organic carbon (OC), C oxidizable by KMnO4 (C-KMnO4), particulate OC (POC), microbial biomass carbon and light SOM in the 0.0-0.05, 0.05-0.10 and 0.10-0.20 m soil layers. The Carbon Management Index (CMI) was calculated to evaluate the impacts of soil management treatments on the quality of the SOM. The different LCFs are sensitive to different soil management systems, and there are significant correlations between them. C-KMnO4 is considered the best indicator of OC carbon lability. In the soil surface layers, the CT reduced the carbon content in all of the labile fractions of the SOM. The use of phosphorus led to the accumulation of OC and carbon in the different soil fractions regardless of the tillage system or cover crop. The application of phosphate fertilizer improved the ability of the NTsystem to promote soil quality, as assessed by the CMI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalysis plays a vital role in modern synthetic chemistry. However, even if conventional catalysis (organo-catalysis, metal-catalysis and enzyme-catalysis) has provided outstanding results, various unconventional ways to make chemical reactions more effective appear now very promising. Computational methods can be of great help to reach a deeper comprehension of these chemical processes. The methodologies employed in this thesis are Quantum-Mechanical (QM), Molecular Mechanics (MM) and hybrid Quantum-Mechanical/Molecular Mechanics (QM/MM) methods. In this abstract the results are briefly summarised. The first unconventional catalysis investigated consists in the application of Oriented External Electric Fields (OEEFs) to SN2 and 4e-electrocyclic reactions. SN2 reactions with back-side mechanism can be catalysed or inhibited by the presence of an OEEF. Moreover, OEEFs can inhibit back-side mechanism (Walden inversion of configuration) and promote the naturally unfavoured front-side mechanism (retention of configuration). Electrocyclic ring opening reaction of 3-substituted cyclobutene molecules can occur with inward or outward mechanisms depending on the nature of substituent groups on the cyclobutene structure (torquoselectivity principle). OEEFs can catalyse the naturally favoured pathway or circumvent the torquoselectivity principle leading to different stereoisomers. The second case study is based on Carbon Nanotubes (CNTs) working as nano-reactors: the reaction of ethyl chloride with chloride anion inside CNTs was investigated. In addition to the SN2 mechanism, syn and anti-E2 reactions are possible. These reactions inside CNTs of different radii were examined with hybrid QM/MM methods, finding that these processes can be both catalysed and inhibited by the CNT diameter. The results suggest that electrostatic effects govern the activation energy variations inside CNTs. Finally, a new biochemical approach, based on the use of DNA catalyst was investigated at QM level. Deoxyribozyme 9DB1 catalyses the RNA ligation allowing the regioselective formation of the 3'-5' bond, following an addition-elimination two-step mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quality of human life depends to a large degree on the availability of energy. In recent years, photovoltaic technology has been growing extraordinarily as a suitable source of energy, as a consequence of the increasing concern over the impact of fossil fuels on climate change. Developing affordable and highly efficiently photovoltaic technologies is the ultimate goal in this direction. Dye-sensitized solar cells (DSSCs) offer an efficient and easily implementing technology for future energy supply. Compared to conventional silicon solar cells, they provide comparable power conversion efficiency at low material and manufacturing costs. In addition, DSSCs are able to harvest low-intensity light in diffuse illumination conditions and then represent one of the most promising alternatives to the traditional photovoltaic technology, even more when trying to move towards flexible and transparent portable devices. Among these, considering the increasing demand of modern electronics for small, portable and wearable integrated optoelectronic devices, Fibre Dye-Sensitized Solar Cells (FDSSCs) have gained increasing interest as suitable energy provision systems for the development of the next-generation of smart products, namely “electronic textiles” or “e-textiles”. In this thesis, several key parameters towards the optimization of FDSSCs based on inexpensive and abundant TiO2 as photoanode and a new innovative fully organic sensitizer were studied. In particular, the effect of various FDSSCs components on the device properties pertaining to the cell architecture in terms of photoanode oxide layer thickness, electrolytic system, cell length and electrodes substrates were examined. The photovoltaic performances of the as obtained FDSSCs were fully characterized. Finally, the metal part of the devices (wire substrate) was substituted with substrates suitable for the textile industry as a fundamental step towards commercial exploitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asymmetric organocatalysed reactions are one of the most fascinating synthetic strategies which one can adopt in order to induct a desired chirality into a reaction product. From all the possible practical applications of small organic molecules in catalytic reaction, amine–based catalysis has attracted a lot of attention during the past two decades. The high interest in asymmetric aminocatalytic pathways is to account to the huge variety of carbonyl compounds that can be functionalized by many different reactions of their corresponding chiral–enamine or –iminium ion as activated nucleophile and electrophile, respectively. Starting from the employment of L–Proline, many useful substrates have been proposed in order to further enhance the catalytic performances of these reaction in terms of enantiomeric excess values, yield, conversion of the substrate and turnover number. In particular, in the last decade the use of chiral and quasi–enantiomeric primary amine species has got a lot of attention in the field. Contemporaneously, many studies have been carried out in order to highlight the mechanism through which these kinds of substrates induct chirality into the desired products. In this scenario, computational chemistry has played a crucial role due to the possibility of simulating and studying any kind of reaction and the transition state structures involved. In the present work the transition state geometries of primary amine–catalysed Michael addition reaction of cyclohexanone to trans–β–nitrostyrene with different organic acid cocatalysts has been studied through different computational techniques such as density functional theory based quantum mechanics calculation and force–field directed molecular simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of my PhD was the combination of the principles of transition metal catalysis with photoredox catalysis. We focused our attention on the development of novel dual catalytic protocols for the functionalization of carbonyl compounds through the generation of transient nucleophilic organometallic species. Specifically, we focused on the development of new methodologies combining photoredox catalysis with titanium and nickel in low oxidation state. Firstly, a Barbier-type allylation of aromatic and aliphatic aldehydes –catalytic in titanium– in the presence of a blue photon-absorbing dye was developed. Parallelly, we were pleased to observe that the developed methodology could also be extended to the propargylation of aldehydes under analogous conditions. After an extensive re–optimization of all the reaction parameters, we developed an enantioselective and diastereoselective pinacol coupling of aromatic aldehydes promoted by non-toxic, cheap and easy to synthetize titanium complexes. The key feature, that allows the complete (dia)stereocontrol played by titanium, is the employment of a red-absorbing organic dye. The tailored (photo)redox properties of the red-absorbing organic dye [nPr–DMQA+][BF4–] promote the selective reduction of Ti(IV) to Ti(III). Moreover, even if the major contribution in dual photoredox and nickel catalysis is devoted to the realization of cross-coupling-type reactions, we wanted to evaluate different possible scenarios. Our focus was on the possibility of exploiting intermediates arising from the oxidative addition of nickel complexes as transient nucleophilic species. The first topic considered regarded the possibility to perform allylation of aldehydes by dual photoredox and nickel catalysis. In the first instance, a non–stereocontrolled version of the reaction was presented. Finally, after a long series of drastic modification of the reaction conditions, a highly enantioselective variant of the protocol was also reported. All the reported methodologies are supported by careful photophysical analysis and, in some cases, computational modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the course of evolution, Nature has elegantly learned to use light to drive chemical reactions. On the other hand, humans have only recently started learning how to play with this powerful tool to carry out chemical transformations. In particular, a step forward was possible thanks to molecules and materials that can absorb light and trigger a series of processes that can drive chemical reactions. However, scarce elements are extensively employed in the design of most of these compounds and considerations on their scarcity and toxicity have sparked interest on alternatives based on earth-abundant elements. In this framework, the focus of this thesis has been the development and employment of heavy-metal free chromophores and of earth-abundant oxides. The first chapter regards the functionalization of boron-dipyrromethenes (BODIPYs) so as to allow access to their triplet excited state and tune their redox potentials, which was achieved thanks to the design of orthogonal donor-acceptor dyads. The BODIPY dyads were used to promote a photoredox reaction, and the mechanism of the reaction was clarified. In the second chapter, organic chromophores that display thermally-activated delayed fluorescence (TADF) were studied. These were used to perform enantioselective photoredox reactions, and a mechanistic investigation allowed to elucidate the fate of these photosensitizers in the reaction. Thanks to their stronger reducing power, it was possible to demonstrate the employability of TADF dyes in artificial photosynthesis, as well. Last, the oxidation of biomass-derived compounds was studied in a photoelectrochemical cell. For this purpose, hematite photoanodes were synthesized in collaboration with Prof. Caramori’s group at the University of Ferrara (Italy) and they were tested in the presence of a redox mediator. In addition to this, the possibility of repurposing a copper(II) water oxidation catalyst for the oxidation of biomass was investigated in collaboration with Prof. Llobet’s group at ICIQ (Tarragona, Spain).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the spectroscopic phenomena in organic solids, in combination with other techniques, is an effective tool for the understanding of the structural properties of materials based on these compounds. This Ph.D. work was dedicated to the spectroscopic investigation of some relevant processes occurring in organic molecular crystals, with the goal of expanding the knowledge on the relationship between structure, dynamics and photoreactivity of these systems. Vibrational spectroscopy has been the technique of choice, always in combination with X-ray diffraction structural studies and often the support of computational methods. The vibrational study of the molecular solid state reaches its full potential when it includes the low-wavenumber region of the lattice-phonon modes, which probe the weak intermolecular interactions and are the fingerprints of the lattice itself. Microscopy is an invaluable addition in the investigation of processes that take place in the micro-meter scale of the crystal micro-domains. In chemical and phase transitions, as well as in polymorph screening and identification, the combination of Raman microscopy and lattice-phonon detection has provided useful information. Research on the fascinating class of single-crystal-to-single-crystal photoreactions, has shown how the homogeneous mechanism of these transformations can be identified by lattice-phonon microscopy, in agreement with the continuous evolution of their XRD patterns. On describing the behavior of the photodimerization mechanism of vitamin K3, the focus was instead on the influence of its polymorphism in governing the product isomerism. Polymorphism is the additional degree of freedom of molecular functional materials, and by advancing in its control and properties, functionalities can be promoted for useful applications. Its investigation focused on thin-film phases, widely employed in organic electronics. The ambiguities in phase identification often emerging by other experimental methods were successfully solved by vibrational measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thanks to the development and combination of molecular markers for the genetic traceability of sunflower varieties and a gas chromatographic method for the determination of the FAs composition of sunflower oil, it was possible to implement an experimental method for the verification of both the traceability and the variety of organic sunflower marketed by Agricola Grains S.p.A. The experimental activity focused on two objectives: the implementation of molecular markers for the routine control of raw material deliveries for oil extraction and the improvement and validation of a gas chromatographic method for the determination of the FAs composition of sunflower oil. With regard to variety verification and traceability, the marker systems evaluated were the following: SSR markers (12) arranged in two multiplex sets and SCAR markers for the verification of cytoplasmic male sterility (Pet1) and fertility. In addition, two objectives were pursued in order to enable a routine application in the industrial field: the development of a suitable protocol for DNA extraction from single seeds and the implementation of a semi-automatic capillary electrophoresis system for the analysis of marker fragments. The development and validation of a new GC/FID analytical method for the determination of fatty acids (FAME) in sunflower achenes to improve the quality and efficiency of the analytical flow in the control of raw and refined materials entering the Agricola Grains S.p.A. production chain. The analytical performances being validated by the newly implemented method are: linearity of response, limit of quantification, specificity, precision, intra-laboratory precision, robustness, BIAS. These parameters are used to compare the newly developed method with the one considered as reference - Commission Regulation No. 2568/91 and Commission Implementing Regulation No. 2015/1833. Using the combination of the analytical methods mentioned above, the documentary traceability of the product can be confirmed experimentally, providing relevant information for subsequent marketing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work addresses the development and characterization of porous chitosan-alginate based polyelectrolyte complexes, obtained by using two different proportions of the biocompatible surfactant Pluronic F68. These biomaterials are proposed for applications as biodegradable and biocompatible wound dressing and/or scaffolds. The results indicate that thickness, roughness, porosity and liquid uptake of the membranes increase with the amount of surfactant used, while their mechanical properties and stability in aqueous media decrease. Other important properties such as color and surface hydrophilicity (water contact angle) are not significantly altered or did not present a clear tendency of variation with the increase of the amount of surfactant added to the polyelectrolyte complexes, such as real density, average pore diameter, total pore volume and surface area. The prepared biomaterials were not cytotoxic to L929 cells. In conclusion, it is possible to tune the physicochemical properties of chitosan-alginate polyelectrolyte complexes, through the variation of the proportion of surfactant (Pluronic F68) added to the mixture, so as to enable the desired application of these biomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facial pain often persists long after any identifiable organic pathology has healed. Moreover, in a subgroup of patients with temporomandibular disorder (TMD), no treatment is effective. Knowledge of factors associated with persistent pain in TMD could help identify personalized treatment approaches. Therefore, we conducted a critical review of the literature for the period from January 2000 to December 2013 to identify factors related to TMD development and persistence. The literature findings showed that chronic TMD is marked by psychological distress (somatization and depression, affective distress, fear of pain, fear of movement, and catastrophizing) and characteristics of pain amplification (hyperalgesia and allodynia). Furthermore, these factors seem to interact in TMD development. In addition, our review demonstrates that upregulation of the serotonergic pathway, sleep problems, and gene polymorphisms influence the chronicity of TMD. We conclude that psychological distress and pain amplification contribute to chronic TMD development, and that interactions among these factors complicate pain management. These findings emphasize the importance of multidisciplinary assistance in TMD treatment.