949 resultados para optoelectronic packaging


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enterprise Systems (ES) can be understood as the de facto standard for holistic operational and managerial support within an organization. Most commonly ES are offered as commercial off-the-shelf packages, requiring customization in the user organization. This process is a complex and resource-intensive task, which often prevents small and midsize enterprises (SME) from undertaking configuration projects. Especially in the SME market independent software vendors provide pre-configured ES for a small customer base. The problem of ES configuration is shifted from the customer to the vendor, but remains critical. We argue that the yet unexplored link between process configuration and business document configuration must be closer examined as both types of configuration are closely tied to one another.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective digital human model (DHM) simulation of automotive driver packaging ergonomics, safety and comfort depends on accurate modelling of occupant posture, which is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper presents a finite-element study simulating the deflection of seat cushion foam and supportive seat structures, as well as human buttock and thigh soft tissue when seated. The three-dimensional data used for modelling thigh and buttock geometry were taken on one 95th percentile male subject, representing the bivariate percentiles of the combined hip breadth (seated) and buttock-to-knee length distributions of a selected Australian and US population. A thigh-buttock surface shell based on this data was generated for the analytic model. A 6mm neoprene layer was offset from the shell to account for the compression of body tissue expected through sitting in a seat. The thigh-buttock model is therefore made of two layers, covering thin to moderate thigh and buttock proportions, but not more fleshy sizes. To replicate the effects of skin and fat, the neoprene rubber layer was modelled as a hyperelastic material with viscoelastic behaviour in a Neo-Hookean material model. Finite element (FE) analysis was performed in ANSYS V13 WB (Canonsburg, USA). It is hypothesized that the presented FE simulation delivers a valid result, compared to a standard SAE physical test and the real phenomenon of human-seat indentation. The analytical model is based on the CAD assembly of a Ford Territory seat. The optimized seat frame, suspension and foam pad CAD data were transformed and meshed into FE models and indented by the two layer, soft surface human FE model. Converging results with the least computational effort were achieved for a bonded connection between cushion and seat base as well as cushion and suspension, no separation between neoprene and indenter shell and a frictional connection between cushion pad and neoprene. The result is compared to a previous simulation of an indentation with a hard shell human finite-element model of equal geometry, and to the physical indentation result, which is approached with very high fidelity. We conclude that (a) SAE composite buttock form indentation of a suspended seat cushion can be validly simulated in a FE model of merely similar geometry, but using a two-layer hard/soft structure. (b) Human-seat indentation of a suspended seat cushion can be validly simulated with a simplified human buttock-thigh model for a selected anthropomorphism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Extract] For just $5.29 Australians can now purchase "Skins" from local, independent grocers to cover their cigarette packet with the Aboriginal or Torres Strait Islander flag. We argue that this use of cultural content and copyright' imagery on cigarette packets negates health promotion efforts, such as Australia's recent introduction of plain packaging laws and the subsequent dismissal of a legal challenge from the tobacco industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Food labelling on food packaging has the potential to have both positive and negative effects on diets. Monitoring different aspects of food labelling would help to identify priority policy options to help people make healthier food choices. A taxonomy of the elements of health-related food labelling is proposed. A systematic review of studies that assessed the nature and extent of health-related food labelling has been conducted to identify approaches to monitoring food labelling. A step-wise approach has been developed for independently assessing the nature and extent of health-related food labelling in different countries and over time. Procedures for sampling the food supply, and collecting and analysing data are proposed, as well as quantifiable measurement indicators and benchmarks for health-related food labelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design activities of the development of the SCRAMSPACE I scramjet-powered free-flight experiment are described in this paper. The objectives of this flight are first described together with the definition of the primary, secondary and tertiary experiments. The Scramjet configuration studied is first discussed together with the rocket motor system selected for this flight. The different flight sequences are then explained, highlighting the SCRAMSPACE I free-flyer separation and re-orientation procedures. A design trade-off study is then described considering vehicle stability, packaging, thermo-structural analysis and trajectory, discussing the alignment of the predicted performance with the mission scientific requirements. The global system architecture and instrumentation of the vehicle are then explained. The conclusions of this design phase are that a vehicle design has been produced which is able to meet the mission scientific goals and the procurement & construction of the vehicle are ongoing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nonlinear finite element analysis was carried out to investigate the viscoplastic deformation of solder joints in a ball grid array (BGA) package under temperature cycle. The effects of constraint on print circuit board (PCB) and stiffness of substrate on the deformation behaviour of the solder joints were also studied. A relative damage stress was adopted to analyze the potential failure sites in the solder joints. The results indicated that high inelastic strain and strain energy density were developed in the joints close to the package center. On the other hand, high constraint and high relative damage stress were associated with the joint closest to the edge of the silicon chip. The joint closest to the edge of the silicon chip was regarded as the most susceptible failure site if cavitation instability is the dominant failure mechanism. Increase the external constraint on the print circuit board (PCB) causes a slight increase in stress triaxiality (m/eq) and relative damage stress in the joint closest to the edge of silicon die. The relative damage stress is not sensitive to the Young’s modulus of the substrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose Pharmaceuticals have played an important role in improving the quality of life of the human population in modern times. However, it must also be acknowledged that both the production and use of pharmaceuticals have a significant, negative impact on the environment and consequently, a negative impact on the health of humans and wildlife. This negative impact is due to the embedded carbon in pharmaceuticals' manufacture and distribution and the waste generated in their manufacture, consumption and disposal. Pharmaceutical waste is comprised of contaminated waste (unwanted pharmaceuticals and their original containers) and non-contaminated waste (non-hazardous packaging waste). The paper aims to discuss these issues. Design/methodology/approach The article is a literature review. Findings The article identified a gap in the literature around pharmacist attitudes and behaviour toward the environmentally responsible handling of pharmaceutical waste. Originality/value Pharmacists, with their professional commitment to the quality use of medicines and their active participation in the medicines management pathway, already play an important role in the more sustainable use of pharmaceuticals. Even so, they have the potential to play an even greater role with the environmentally responsible disposal of pharmaceutical waste (including packaging waste) and the education of other health professionals and the general public on this topic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing need for biodegradable, environmentally friendly plastics to replace the petroleum-based non-degradable plastics which litter and pollute the environment. Starch-based plastic film composites are becoming a popular alternative because of their low cost, biodegradability, the abundance of starch, and ease with which starch-based films can be chemically modified. This paper reports on the results of using sugar cane bagasse nanofibres to improve the physicochemical properties of starch-based polymers. The addition of bagasse nanofibre (2.5, 5, 10 or 20 wt%) to (modified) potato starch (‘Soluble starch’) reduced the moisture uptake by up to 17 % at 58 % relative humidity (RH). The film’s tensile strength and Young’s Modulus increased by up to 100 % and 200 % with 10 wt% and 20 wt% nanofibre respectively at 58% RH. The tensile strain reduced by up to 70 % at 20 wt% fibre loading. These results indicate that addition of sugar cane bagasse nanofibres significantly improved the properties of starch-based plastic films

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CIB is developing a priority theme, now termed Improving Construction and Use through Integrated Design & Delivery Solutions (IDDS). The IDDS working group for this theme adopted the following definition: Integrated Design and Delivery Solutions use collaborative work processes and enhanced skills, with integrated data, information, and knowledge management to minimize structural and process inefficiencies and to enhance the value delivered during design, build, and operation, and across projects. The design, construction, and commissioning sectors have been repeatedly analysed as inefficient and may or may not be quite as bad as portrayed; however, there is unquestionably significant scope for IDDS to improve the delivery of value to clients, stakeholders (including occupants), and society in general, simultaneously driving down cost and time to deliver operational constructed facilities. Although various initiatives developed from computer‐aided design and manufacturing technologies, lean construction, modularization, prefabrication and integrated project delivery are currently being adopted by some sectors and specialisations in construction; IDDS provides the vision for a more holistic future transformation. Successful use of IDDS requires improvements in work processes, technology, and people’s capabilities to span the entire construction lifecycle from conception through design, construction, commissioning, operation, refurbishment/ retrofit and recycling, and considering the building’s interaction with its environment. This vision extends beyond new buildings to encompass modifications and upgrades, particularly those aimed at improved local and area sustainability goals. IDDS will facilitate greater flexibility of design options, work packaging strategies and collaboration with suppliers and trades, which will be essential to meet evolving sustainability targets. As knowledge capture and reuse become prevalent, IDDS best practice should become the norm, rather than the exception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three case studies are presented to show low-temperature plasma-specific effects in the solution of (i) effective control of nucleation and growth; (ii) environmental friendliness; and (iii) energy efficiency critical issues in semiconducting nanowire growth. The first case (related to (i) and (iii)) shows that in catalytic growth of Si nanowires, plasma-specific effects lead to a substantial increase in growth rates, decrease of the minimum nanowire thickness, and much faster nanowire nucleation at the same growth temperatures. For nucleation and growth of nanowires of the same thickness, much lower temperatures are required. In the second example (related to (ii)), we produce Si nanowire networks with controllable nanowire thickness, length, and area density without any catalyst or external supply of Si building material. This case is an environmentally-friendly alternative to the commonly used Si microfabrication based on a highly-toxic silane precursor gas. The third example is related to (iii) and demonstrates that ZnO nanowires can be synthesized in plasma-enhanced CVD at significantly lower process temperatures than in similar neutral gas-based processes and without compromising structural quality and performance of the nanowires. Our results are relevant to the development of next-generation nanoelectronic, optoelectronic, energy conversion and sensing devices based on semiconducting nanowires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrogenated carbon nanotips (NCNTPs) have been synthesized using customized plasma-enhanced hot filament chemical vapor deposition. The morphological, structural, and photoluminescent properties of the NCNTPs are investigated using scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and photoluminescence spectroscopy. The photoluminescence measurements show that the NCNTPs predominantly emit a green band at room temperature while strong blue emission is generated at 77 K. It is shown that these very different emission behaviors are related to the change of the optical band-gap and the concentration of the paramagnetic defects of the carbon nanotips. The studies shed light on the controversies on the photoluminescence mechanisms of carbon-based amorphous films measured at different temperatures. The relevance of the results to the use of nitrogenated carbon nanotips in light-emitting optoelectronic devices is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diverse morphologies of multidimensional hierarchical single-crystalline ZnO nanoarchitectures including nanoflowers, nanobelts, and nanowires are obtained by use of a simple thermal evaporation and vapour-phase transport deposition technique by placing Au-coated silicon substrates in different positions inside a furnace at process temperatures as low as 550 °C. The nucleation and growth of ZnO nanostructures are governed by the vapour–solid mechanism, as opposed to the commonly reported vapour–liquid–solid mechanism, when gold is used in the process. The morphological, structural, compositional and optical properties of the synthesized ZnO nanostructures can be effectively tailored by means of the experimental parameters, and these properties are closely related to the local growth temperature and gas-phase supersaturation at the sample position. In particular, room-temperature photoluminescence measurements reveal an intense near-band-edge ultraviolet emission at about 386 nm for nanobelts and nanoflowers, which suggests that these nanostructures are of sufficient quality for applications in, for example, optoelectronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrogenated carbon nanotips with a low atomic concentration of nitrogen have been synthesized by using a custom-designed plasma-enhanced hot-filament plasma chemical vapor deposition system. The properties (including morphology, structure, composition, photoluminescence, etc.) of the synthesized nitrogenated carbon nanotips are investigated using advanced characterization tools. The room-temperature photoluminescence measurements show that the nitrogenated carbon nanotips can generate two distinct broad emissions located at ∼405 and ∼507 nm, respectively. Through the detailed analysis, it is shown that these two emission bands are attributed to the transition between the lone pair valence and bands, which are related to the sp3 and sp2 C-N bonds, respectively. These results are highly relevant to advanced applications of nitrogenated carbon nanotips in light emitting optoelectronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple and effective method of controlling the growth of vertically aligned carbon nanotube arrays in a lowerature plasma is presented. Ni catalyst was pretreated by plasma immersion ion implantation prior to the nanotube growth by plasma-enhanced chemical vapor deposition. Both the size distribution and the areal density of the catalyst nanoparticles decrease due to the ion-surface interactions. Consequently, the resulting size distribution of the vertically aligned carbon nanotubes is reduced to 50 ∼ 100 nm and the areal density is lowered (by a factor of ten) to 10 8 cm -2, which is significantly different from the very-high-density carbon nanotube forests commonly produced by thermal chemical vapor deposition. The efficiency of this pretreatment is compared with the existing techniques such as neutral gas annealing and plasma etching. These results are highly relevant to the development of the next-generation nanoelectronic and optoelectronic devices that require effective control of the density of nanotube arrays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The possibility of effective control of morphology and electrical properties of self-organized graphene structures on plasma-exposed Si surfaces is demonstrated. The structures are vertically standing nanosheets and can be grown without any catalyst and any external heating upon direct contact with high-density inductively coupled plasmas at surface temperatures not exceeding 673–723 K. Study of nucleation and growth dynamics revealed the possibility to switch-over between the two most common (turnstile- and maze-like) morphologies on the same substrates by a simple change of the plasma parameters. This change leads to the continuous or discontinuous native oxide layer that supports self-organized patterns of small carbon nanoparticles on which the structures nucleate. It is shown that by tailoring the nanoparticle arrangement one can create various three-dimensional architectures and networks of graphene nanosheet structures. We also demonstrate effective control of the degree of graphitization of the graphene nanosheet structures from the initial through the final growth stages. This makes it possible to tune the electrical resistivity properties of the produced three-dimensional patterns/networks from strongly dielectric to semiconducting. Our results contribute to enabling direct integration of graphene structures into presently dominant Si-based nanofabrication platform for next-generation nanoelectronic, sensor, biomedical, and optoelectronic components and nanodevices.