991 resultados para optimize
Resumo:
Model-based and model-free controllers can, in principle, learn arbitrary actions to optimize their behavior, at least those actions that can be expressed and explored. Indeed, these are often referred to as instrumental controllers because their choices are learned to be instrumental for the delivery of desired outcomes. Although this flexibility is very powerful, it comes with an attendant cost of learning. Evolution appears to have endowed everything from the simplest organisms to us with powerful, pre-specified, but inflexible alternatives. These responses are termed Pavlovian, after the famous Russian physiologist and psychologist Pavlov. The responses of the Pavlovian controller are determined by evolutionary (phylogenetic) considerations rather than (ontogenetic) aspects of the contingent development or learning of an individual. These responses directly interact with instrumental choices arising from goal-directed and habitual controllers. This interaction has been studied in a wealth of animal paradigms, and can be helpful, neutral, or harmful, according to circumstance. Although there has been less careful or analytical study of it in humans, it can be interpreted as underpinning a wealth of behavioral aberrations. © 2009 Elsevier Inc. All rights reserved.
Resumo:
Against a background of increasing energy demand and rising fuel prices, hybrid-electric propulsion systems (HEPS) have the potential to significantly reduce fuel consumption in the aviation industry, particularly in the lighter sectors. By taking advantage of both Electric Motor (EM) and Internal Combustion Engine (ICE), HEPS provide not only a benefit in fuel saving but also a reduction in take-off noise and the emission levels. This research considers the design and sizing process of a hybrid-electric propulsion system for a single-seat demonstrator aircraft, the experimental derivation of the ICE map and the EM parameters. In addition to the experimental data, a novel modeling approach including several linked desktop PC software packages is presented to analyze and optimize hybrid-electric technology for aircraft. Further to the analysis of a parallel hybrid-electric, mid-scale aircraft, this paper also presents a scaling approach for a 20 kg UAV and a 50 tonne inter-city airliner. At the smaller scale, two different mission profiles are analyzed: an ISR mission profile, where the simulation routine optimizes the component size of the hybrid-electric propulsion system with respect to fuel saving, and a maximum duration profile; where the flight endurance is determined as a function of payload weight. At the larger scale, the performance of a 50 tonne inter-city airliner is modeled, based on a hybrid-electric gas-turbine, assuming a range of electric boost powers and battery masses.
Resumo:
This paper presents an insight into leather manufacturing processes, depicting peculiarities and challenges faced by leather industry. An analysis of this industry reveals the need for a new approach to optimize the productivity of leather processing operations, ensure consistent quality of leather, mitigate the adverse health effects in tannery workers exposed to chemicals and comply with environmental regulation. Holonic manufacturing systems (HMS) paradigm represent a bottom-up distributed approach that provides stability, adaptability, efficient use of resources and a plug and operate functionality to the manufacturing system. A vision of how HMS might operate in a tannery is illustrated presenting the rationales behind its application in this industry. © 2013 Springer-Verlag.
Resumo:
We describe studies of new nanostructured materials consisting of carbon nanotubes wrapped in sequential coatings of two different semiconducting polymers, namely, poly(3-hexylthiophene) (P3HT) and poly(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT). Using absorption spectroscopy and steady-state and ultrafast photoluminescence measurements, we demonstrate the role of the different layer structures in controlling energy levels and charge transfer in both solution and film samples. By varying the simple solution processing steps, we can control the ordering and proportions of the wrapping polymers in the solid state. The resulting novel coaxial structures open up a variety of new applications for nanotube blends and are particularly promising for implementation into organic photovoltaic devices. The carbon nanotube template can also be used to optimize both the electronic properties and morphology of polymer composites in a much more controlled fashion than achieved previously, offering a route to producing a new generation of polymer nanostructures.
Resumo:
BACKGROUND: Routine assessment of dry weight in chronic hemodialysis patients relies primarily on clinical evaluation of patient fluid status. We evaluated whether measurement of postdialytic vascular refill could assist in the assessment of dry weight. METHODS: Twenty-eight chronic, stable hemodialysis patients were studied during routine treatment sessions using constant dialysate temperature and dialysate sodium concentration, and relative changes in blood volume were monitored using Crit-Line III monitors throughout this study. The study was divided into three phases. Phase 1 studies evaluated the time-dependence of vascular compartment refill after completion of hemodialysis. Phase 2 studies evaluated the relationships in patient subgroups between intradialytic changes in blood volume and the presence of postdialytic vascular compartment refill during that last 10 minutes of hemodialysis after stopping ultrafiltration. Phase 3 studies evaluated the extent of dry weight changes following the application of a protocol for blood volume reduction, postdialytic vascular compartment refill, and correlation with clinical evidence of intradialytic hypovolemia and/or postdialytic fatigue. Phase 3 included anywhere from three to five treatments. RESULTS: Phase 1 studies demonstrated that despite interpatient variability in the magnitude of postdialytic vascular compartment refill, when significant refill was evident, it always continued for at least 30 minutes. However, the majority of refill took place within 10 minutes postdialysis. Phase 2 studies identified 3 groups of patients: those who exhibited intradialytic reductions in blood volume but not postdialytic vascular compartment refill (group 1), those who exhibited intradialytic reductions in blood volume and postdialytic vascular compartment refill (group 2), and those whose blood volume did not change substantially during hemodialysis treatment (group 3). In phase 3 studies, use of an ultrafiltration protocol for blood volume reduction and monitoring of postdialytic vascular compartment refill combined with clinical assessment of hypovolemia and postdialytic fatigue demonstrated that patients often had a clinical dry weight assessment which was too low or too high. In all 28 patients studied, dry weight was either increased or decreased following use of this protocol. CONCLUSION: Determination of the extent of both intradialytic decreases in blood volume and postdialytic vascular compartment refill, combined with clinical assessment of intradialytic hypovolemia and postdialytic fatigue, can help assess patient dry weight and optimize volume status while reducing dialysis associated morbidity. The number of hospital admissions due to fluid overload may be reduced.
Resumo:
We design, optimize and demonstrate a highly efficient carrier-depletion silicon Mach-Zehnder modulator with very low VπL of ~0.2Vcm. Design consideration, fabrication process and experimental results will be presented. © OSA 2013.
Resumo:
This paper reports a theoretical model for Dicke Superradiance in semiconductor laser devices. Simulations agree well with previously-observed superradiance properties and are used to optimize driving conditions and device geometry. © OSA/ANIC/IPR/Sensors/SL/SOF/SPPCom/2011.
Resumo:
A closed aquatic ecosystem (CAES) was developed to stud), the effects of microgravity on the function of closed ecosystems aboard the Chinese retrieved satellite and on the spacecraft SHENZHOU-II. These systems housed a small freshwater snail (Bulinus australianus) and an autotrophic green algae (Chlorella pyrenoidosa). The results of the test on the satellite were that the concentration of algae changed little, but that the snails died during the experiments. We then sought to optimize the function of the control system, the cultural conditions and the data acquisition system and carried out an experiment on the spacecraft SHENZHOU-II. Using various sensors to monitor the CAES, real-time data regarding the operation of the CAES in microgravity was acquired. In addition, all on-board Ig centrifuge was included to identify gravity-related factors. It was found that microgravity is the major factor affecting the operation of the CAES in space. The change in biomass of the primary producer during each day in microgravity was larger than that of the control groups. The mean biomass concentration per day in the microgravity group decreased, but that of the control groups increased for several days and then leveled off. Space effects on the biomass of a primary producer may be a result of microgravity effects leading to increasing metabolic rates of the consumer combined with decreases in photosynthesis. (c) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
The achievement of the desirable morphology at the nanometer scale of bulk heterojunctions consisting of a conjugated polymer with fullerene derivatives is a prerequisite in order to optimize the power conversion efficiency of organic solar cells. The various experimental conditions such as the choice of solvent, drying rates and annealing have been found to significantly affect the blend morphology and the final performance of the photovoltaic device. In this work, we focus on the effects of post deposition thermal annealing at 140 °C on the blend morphology, the optical and structural properties of bulk heterojunctions that consist of poly(3-hexylthiophene) (P3HT) and a methanofullerene derivative (PCBM). The post thermal annealing modifies the distribution of the P3HT and the PCBM inside the blend films, as it has been found by Spectroscopic Ellipsometry studies in the visible to far-ultraviolet spectral range. Phase separation was identified by AFM and GIXRD as a result of a slow drying process which took place after the spin coating process. The increase of the annealing time resulted to a significant increase of the P3HT crystallinity at the top regions of the blend films. © 2011 Elsevier B.V. All rights reserved.
Resumo:
A comparative study was conducted to reveal the differentiate effects of eight different filter media including gravel, zeolites, anthracite, shale, vermiculite, ceramic filter media, blast furnace steel slag and round ceramsite. The study mainly related to the eight different filter media's removal performances of organic matter, nitrogen and phosphorus in the vertical flow constructed wetland simulated system, which treating wastewater at hydraulic loading rate of 1000-2500 mm/d. The results indicated that the removal effects were closely related to the physical and chemical properties of medium materials. Anthracite-filled system had the highest removal rate for the total organic carbon (TOC), up to 70%, and the removal rates of other systems ranged from 20% to 30%. As for the five-day biochemical oxygen demand (BOD5), anthracite-filled and steel slag-filled systems had the highest removal rates, also up to 70%, as well as other systems all exceeded 50%. At the same time, for the total nitrogen (TN) and NH4(+)-N, the zeolites-filled and ceramic-filled systems had the best performances with the removal rates of more than 70%, the other way round, the removal rates of other systems were only about 20%. The distinguishable effects were also observed in removal performances of total phosphorus (TP) and total dissoluble phosphorus (TDP). The removal rates of TP and TDP in steel slag-filled systems were more than 90%, a much higher value, followed by that of the anthracite-filled system, more than 60%, but those of other systems being the less. Our study provided a potential mechanism to optimize the filter media design for the vertical flow constructed wetlands.
Resumo:
Microcystin analysis in sediments and soils is considered very difficult due to low recovery for extraction. This is the primary limiting factor for understanding the fate of toxins in the interface between water and sediment in both the aquatic ecosystem as well as in soils. In the present study, a wide range of extraction solvents were evaluated over a wide range of pH, extraction approaches and equilibration time to optimize an effective extraction procedure for the analysis of microcystins in soils and lake sediments. The number of extractions required and acids in extraction solutions were also studied. In this procedure, EDTA-sodium pyrophosphate solution was selected as an extraction solvent based on the adsorption mechanism study. The optimized procedure proved to be highly efficient and achieved over 90% recovery. Finally, the developed procedure was applied to field soil and sediment sample collected from Chinese lakes during bloom seasons and microcystins were determined in six of ten samples. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Aeromonas hydrophila and Vibrio fluvialis are the causative agents of a serious haemorrhagic septicaemia that affects a wide range of freshwater fish in China. In order to develop a bivalent anti-A. hydrophila and anti-V. fluvialis formalin-killed vaccine to prevent this disease, an orthogonal array design (OAD) method was used to optimize the production conditions, using three factors, each having three levels. The effects of these factors and levels on the relative per cent survival for crucian carp were quantitatively evaluated by analysis of variance. The final optimized formulation was established. The data showed that inactivation temperature had a significant effect on the potency of vaccine, but formalin concentration did not. The bivalent vaccine could elicit a strong humoral response in crucian carp (Carassius auratus L.) against both A. hydrophila and V. fluvialis simultaneously, which peaked at 3 or 5 weeks respectively. Antibody titres remained high until week 12, the end of the experiment, after a single intraperitoneal injection. The verification experiment confirmed that an optimized preparation could provide protection for fish at least against A. hydrophila infection, and did perform better than the non-optimized vaccine judged by the antibody levels and protection rate, suggesting that OAD is of value in the development of improved vaccine formulations.
Resumo:
Throwing is a complex and highly dynamic task. Humans usually exploit passive dynamics of their limbs to optimize their movement and muscle activation. In order to approach human throwing, we developed a double pendulum robotic platform. To introduce passivity into the actuated joints, clutches were included in the drive train. In this paper, we demonstrate the advantage of exploiting passive dynamics in reducing the mechanical work. However, engaging and disengaging the clutches are done in discrete fashions. Therefore, we propose an optimization approach which can deal with such discontinuities. It is shown that properly engaging/disengaging the clutches can reduce the mechanical work of a throwing task. The result is compared to the solution of fully actuated double pendulum, both in simulation and experiment. © 2012 IEEE.
Resumo:
A major problem in gene therapy is the determination of the rates at which gene transfer has occurred. Our work has focused on applications of the Sleeping Beauty (SB) transposon system as a non-viral vector for gene therapy. Excision of a transposon from a donor molecule and its integration into a cellular chromosome are catalyzed by SB transposase. In this study, we used a plasmid-based excision assay to study the excision step of transposition. We used the excision assay to evaluate the importance of various sequences that border the sites of excision inside and outside the transposon in order to determine the most active sequences for transposition from a donor plasmid. These findings together with our previous results in transposase binding to the terminal repeats suggest that the sequences in the transposon-junction of SB are involved in steps subsequent to DNA binding but before excision, and that they may have a role in transposase-transposon interaction. We found that SB transposons leave characteristically different footprints at excision sites in different cell types, suggesting that alternative repair machineries operate in concert with transposition. Most importantly, we found that the rates of excision correlate with the rates of transposition. We used this finding to assess transposition in livers of mice that were injected with the SB transposon and transposase. The excision assay appears to be a relatively quick and easy method to optimize protocols for delivery of genes in SB transposons to mammalian chromosomes in living animals. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Transmission of an electromagnetic wave from a heavily doped n-type GaAs film is studied theoretically. The calculations are performed using the two-dimensional finite-different time-domain method. From the calculations, we find the extraordinary transmission of p-polarized waves through the film with subwavelength grooves on both surfaces at mid-infrared frequencies. By determining a set of groove parameters, we optimize the transmission to as high as 55.2%. We ascribe this extraordinary transmission to the coupling of the surface-plasmon polariton modes and waveguide modes. Such an enhanced transmission device can be useful for mid-infrared wave filters, emitters, and monitors.