899 resultados para operational calculus
Resumo:
The past decade has seen the energy consumption in servers and Internet Data Centers (IDCs) skyrocket. A recent survey estimated that the worldwide spending on servers and cooling have risen to above $30 billion and is likely to exceed spending on the new server hardware . The rapid rise in energy consumption has posted a serious threat to both energy resources and the environment, which makes green computing not only worthwhile but also necessary. This dissertation intends to tackle the challenges of both reducing the energy consumption of server systems and by reducing the cost for Online Service Providers (OSPs). Two distinct subsystems account for most of IDC’s power: the server system, which accounts for 56% of the total power consumption of an IDC, and the cooling and humidifcation systems, which accounts for about 30% of the total power consumption. The server system dominates the energy consumption of an IDC, and its power draw can vary drastically with data center utilization. In this dissertation, we propose three models to achieve energy effciency in web server clusters: an energy proportional model, an optimal server allocation and frequency adjustment strategy, and a constrained Markov model. The proposed models have combined Dynamic Voltage/Frequency Scaling (DV/FS) and Vary-On, Vary-off (VOVF) mechanisms that work together for more energy savings. Meanwhile, corresponding strategies are proposed to deal with the transition overheads. We further extend server energy management to the IDC’s costs management, helping the OSPs to conserve, manage their own electricity cost, and lower the carbon emissions. We have developed an optimal energy-aware load dispatching strategy that periodically maps more requests to the locations with lower electricity prices. A carbon emission limit is placed, and the volatility of the carbon offset market is also considered. Two energy effcient strategies are applied to the server system and the cooling system respectively. With the rapid development of cloud services, we also carry out research to reduce the server energy in cloud computing environments. In this work, we propose a new live virtual machine (VM) placement scheme that can effectively map VMs to Physical Machines (PMs) with substantial energy savings in a heterogeneous server cluster. A VM/PM mapping probability matrix is constructed, in which each VM request is assigned with a probability running on PMs. The VM/PM mapping probability matrix takes into account resource limitations, VM operation overheads, server reliability as well as energy effciency. The evolution of Internet Data Centers and the increasing demands of web services raise great challenges to improve the energy effciency of IDCs. We also express several potential areas for future research in each chapter.
Resumo:
This dissertation concerns convergence analysis for nonparametric problems in the calculus of variations and sufficient conditions for weak local minimizer of a functional for both nonparametric and parametric problems. Newton's method in infinite-dimensional space is proved to be well-defined and converges quadratically to a weak local minimizer of a functional subject to certain boundary conditions. Sufficient conditions for global converges are proposed and a well-defined algorithm based on those conditions is presented and proved to converge. Finite element discretization is employed to achieve an implementable line-search-based quasi-Newton algorithm and a proof of convergence of the discretization of the algorithm is included. This work also proposes sufficient conditions for weak local minimizer without using the language of conjugate points. The form of new conditions is consistent with the ones in finite-dimensional case. It is believed that the new form of sufficient conditions will lead to simpler approaches to verify an extremal as local minimizer for well-known problems in calculus of variations.
Resumo:
The demands of developing modern, highly dynamic applications have led to an increasing interest in dynamic programming languages and mechanisms. Not only applications must evolve over time, but the object models themselves may need to be adapted to the requirements of different run-time contexts. Class-based models and prototype-based models, for example, may need to co-exist to meet the demands of dynamically evolving applications. Multi-dimensional dispatch, fine-grained and dynamic software composition, and run-time evolution of behaviour are further examples of diverse mechanisms which may need to co-exist in a dynamically evolving run-time environment How can we model the semantics of these highly dynamic features, yet still offer some reasonable safety guarantees? To this end we present an original calculus in which objects can adapt their behaviour at run-time to changing contexts. Both objects and environments are represented by first-class mappings between variables and values. Message sends are dynamically resolved to method calls. Variables may be dynamically bound, making it possible to model a variety of dynamic mechanisms within the same calculus. Despite the highly dynamic nature of the calculus, safety properties are assured by a type assignment system.
Resumo:
The demands of developing modern, highly dynamic applications have led to an increasing interest in dynamic programming languages and mechanisms. Not only must applications evolve over time, but the object models themselves may need to be adapted to the requirements of different run-time contexts. Class-based models and prototype-based models, for example, may need to co-exist to meet the demands of dynamically evolving applications. Multi-dimensional dispatch, fine-grained and dynamic software composition, and run-time evolution of behaviour are further examples of diverse mechanisms which may need to co-exist in a dynamically evolving run-time environment. How can we model the semantics of these highly dynamic features, yet still offer some reasonable safety guarantees? To this end we present an original calculus in which objects can adapt their behaviour at run-time. Both objects and environments are represented by first-class mappings between variables and values. Message sends are dynamically resolved to method calls. Variables may be dynamically bound, making it possible to model a variety of dynamic mechanisms within the same calculus. Despite the highly dynamic nature of the calculus, safety properties are assured by a type assignment system.