949 resultados para normal coordinate analysis
Resumo:
This paper considers the problem of estimation when one of a number of populations, assumed normal with known common variance, is selected on the basis of it having the largest observed mean. Conditional on selection of the population, the observed mean is a biased estimate of the true mean. This problem arises in the analysis of clinical trials in which selection is made between a number of experimental treatments that are compared with each other either with or without an additional control treatment. Attempts to obtain approximately unbiased estimates in this setting have been proposed by Shen [2001. An improved method of evaluating drug effect in a multiple dose clinical trial. Statist. Medicine 20, 1913–1929] and Stallard and Todd [2005. Point estimates and confidence regions for sequential trials involving selection. J. Statist. Plann. Inference 135, 402–419]. This paper explores the problem in the simple setting in which two experimental treatments are compared in a single analysis. It is shown that in this case the estimate of Stallard and Todd is the maximum-likelihood estimate (m.l.e.), and this is compared with the estimate proposed by Shen. In particular, it is shown that the m.l.e. has infinite expectation whatever the true value of the mean being estimated. We show that there is no conditionally unbiased estimator, and propose a new family of approximately conditionally unbiased estimators, comparing these with the estimators suggested by Shen.
Resumo:
A full dimensional, ab initio-based semiglobal potential energy surface for C2H3+ is reported. The ab initio electronic energies for this molecule are calculated using the spin-restricted, coupled cluster method restricted to single and double excitations with triples corrections [RCCSD(T)]. The RCCSD(T) method is used with the correlation-consistent polarized valence triple-zeta basis augmented with diffuse functions (aug-cc-pVTZ). The ab initio potential energy surface is represented by a many-body (cluster) expansion, each term of which uses functions that are fully invariant under permutations of like nuclei. The fitted potential energy surface is validated by comparing normal mode frequencies at the global minimum and secondary minimum with previous and new direct ab initio frequencies. The potential surface is used in vibrational analysis using the "single-reference" and "reaction-path" versions of the code MULTIMODE. (c) 2006 American Institute of Physics.
Resumo:
Objectives: Does artichoke leaf extract (ALE) ameliorate symptoms of Irritable bowel syndrome (IBS) in otherwise healthy volunteers suffering concomitant dyspepsia? Methods: A subset analysis of a previous dose-ranging, open, postal study, in adults suffering dyspepsia. Two hundred and eight (208) adults were identified post hoc as suffering with IBS. IBS incidence, self-reported usual bowel pattern, and the Nepean Dyspepsia Index (NDI) were compared before and after a 2-month intervention period. Results: There was a significant fall in IBS incidence of 26.4% (p<0.001) after treatment. A significant shift in self-reported usual bowel pattern away from "alternating constipation/diarrhea" toward "normal" (p<0.001) was observed. NDI total symptom score significantly decreased by 41% (p<0.001) after treatment. Similarly, there was a significant 20% improvement in the NDI total quality-of-life (QOL) score in the subset after treatment. Conclusion: This report supports previous findings that ALE ameliorates symptoms of IBS, plus improves health-related QOL.
Resumo:
The chemokine receptor, CCR5, responds to several chemokines leading to changes in activity in several signalling pathways. Here, we investigated the ability of different chemokines to provide differential activation of pathways. The effects of five CC chemokines acting at CCR5 were investigated for their ability to inhibit forskolin- stimulated 3'-5'-cyclic adenosine monophosphate (cAMP) accumulation and to stimulate Ca2+ mobilisation. in Chinese hamster ovary (CHO) cells expressing CCR5. Macrophage inflammatory protein 1 alpha (D26A) (MIP-1 alpha (D26A), CCL3 (D26A)), regulated on activation, normal T-cell expressed and secreted (RANTES, CCLS), MIP-1 beta (CCL4) and monocyte chemoattractant protein 2 (MCP-2, CCL8) were able to inhibit forskolin -stimulated CAMP accumulation, whilst MCP-4 (CCL13) could not elicit a response. CCL3 (D26A), CCL4, CCLS, CCL8 and CCL13 were able to stimulate Ca2+ mobilisation. through CCRS, although CCL3 (D26A) and CCL5 exhibited biphasic concentration-response curves. The Ca2+ responses induced by CCL4, CCL5, CCL8 and CCL13 were abolished by pertussis toxin, whereas the response to CCL3 (D26A) was only partially inhibited by pertussis toxin, indicating G(i/o)-independent signalling induced by this chemokine. Although the rank order of potency of chemokines was similar between the two assays, certain chemokines displayed different pharmacological profiles in cAMP inhibition and Ca2+ mobilisation assays. For instance, whilst CCL13 could not inhibit forskolin-stimulated cAMP accumulation, this chemokine was able to induce Ca2+ mobilisation via CCR5. It is concluded that different chemokines acting at CCR5 can induce different pharmacological responses, which may account for the broad spectrum of chemokines that can act at CCRS. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Objective: This paper presents a detailed study of fractal-based methods for texture characterization of mammographic mass lesions and architectural distortion. The purpose of this study is to explore the use of fractal and lacunarity analysis for the characterization and classification of both tumor lesions and normal breast parenchyma in mammography. Materials and methods: We conducted comparative evaluations of five popular fractal dimension estimation methods for the characterization of the texture of mass lesions and architectural distortion. We applied the concept of lacunarity to the description of the spatial distribution of the pixel intensities in mammographic images. These methods were tested with a set of 57 breast masses and 60 normal breast parenchyma (dataset1), and with another set of 19 architectural distortions and 41 normal breast parenchyma (dataset2). Support vector machines (SVM) were used as a pattern classification method for tumor classification. Results: Experimental results showed that the fractal dimension of region of interest (ROIs) depicting mass lesions and architectural distortion was statistically significantly lower than that of normal breast parenchyma for all five methods. Receiver operating characteristic (ROC) analysis showed that fractional Brownian motion (FBM) method generated the highest area under ROC curve (A z = 0.839 for dataset1, 0.828 for dataset2, respectively) among five methods for both datasets. Lacunarity analysis showed that the ROIs depicting mass lesions and architectural distortion had higher lacunarities than those of ROIs depicting normal breast parenchyma. The combination of FBM fractal dimension and lacunarity yielded the highest A z value (0.903 and 0.875, respectively) than those based on single feature alone for both given datasets. The application of the SVM improved the performance of the fractal-based features in differentiating tumor lesions from normal breast parenchyma by generating higher A z value. Conclusion: FBM texture model is the most appropriate model for characterizing mammographic images due to self-affinity assumption of the method being a better approximation. Lacunarity is an effective counterpart measure of the fractal dimension in texture feature extraction in mammographic images. The classification results obtained in this work suggest that the SVM is an effective method with great potential for classification in mammographic image analysis.
Resumo:
Two different ways of performing low-energy electron diffraction (LEED) structure determinations for the p(2 x 2) structure of oxygen on Ni {111} are compared: a conventional LEED-IV structure analysis using integer and fractional-order IV-curves collected at normal incidence and an analysis using only integer-order IV-curves collected at three different angles of incidence. A clear discrimination between different adsorption sites can be achieved by the latter approach as well as the first and the best fit structures of both analyses are within each other's error bars (all less than 0.1 angstrom). The conventional analysis is more sensitive to the adsorbate coordinates and lateral parameters of the substrate atoms whereas the integer-order-based analysis is more sensitive to the vertical coordinates of substrate atoms. Adsorbate-related contributions to the intensities of integer-order diffraction spots are independent of the state of long-range order in the adsorbate layer. These results show, therefore, that for lattice-gas disordered adsorbate layers, for which only integer-order spots are observed, similar accuracy and reliability can be achieved as for ordered adsorbate layers, provided the data set is large enough.
Resumo:
In order to explore the impact of a degraded semantic system on the structure of language production, we analysed transcripts from autobiographical memory interviews to identify naturally-occurring speech errors by eight patients with semantic dementia (SD) and eight age-matched normal speakers. Relative to controls, patients were significantly more likely to (a) substitute and omit open class words, (b) substitute (but not omit) closed class words, (c) substitute incorrect complex morphological forms and (d) produce semantically and/or syntactically anomalous sentences. Phonological errors were scarce in both groups. The study confirms previous evidence of SD patients’ problems with open class content words which are replaced by higher frequency, less specific terms. It presents the first evidence that SD patients have problems with closed class items and make syntactic as well as semantic speech errors, although these grammatical abnormalities are mostly subtle rather than gross. The results can be explained by the semantic deficit which disrupts the representation of a pre-verbal message, lexical retrieval and the early stages of grammatical encoding.
Resumo:
In this article we present for the first time accurate density functional theory (DFT) and time-dependent (TD) DFT data for a series of electronically unsaturated five-coordinate complexes [Mn(CO)(3)(L-2)](-), where L-2 stands for a chelating strong pi-donor ligand represented by catecholate, dithiolate, amidothiolate, reduced alpha-diimine (1,4-dialkyl-1,4-diazabutadiene (R-DAB), 2,2'-bipyridine) and reduced 2,2'-biphosphinine types. The single-crystal X-ray structure of the unusual compound [Na(BPY)][Mn(CO)(3)(BPY)]center dot Et2O and the electronic absorption spectrum of the anion [Mn(CO)(3)(BPY)](-) are new in the literature. The nature of the bidentate ligand determines the bonding in the complexes, which varies between two limiting forms: from completely pi-delocalized diamagnetic {(CO)(3)Mn-L-2}(-) for L-2 = alpha-diimine or biphosphinine, to largely valence-trapped {(CO)(3)Mn-1-L-2(2-)}(-) for L-2(2-) = catecholate, where the formal oxidation states of Mn and L-2 can be assigned. The variable degree of the pi-delocalization in the Mn(L-2) chelate ring is indicated by experimental resonance Raman spectra of [Mn(CO)(3)(L-2)](-) (L-2=3,5-di-tBu-catecholate and iPr-DAB), where accurate assignments of the diagnostically important Raman bands have been aided by vibrational analysis. The L-2 = catecholate type of complexes is known to react with Lewis bases (CO substitution, formation of six-coordinate adducts) while the strongly pi-delocalized complexes are inert. The five-coordinate complexes adopt usually a distorted square pyramidal geometry in the solid state, even though transitions to a trigonal bipyramid are also not rare. The experimental structural data and the corresponding DFT-computed values of bond lengths and angles are in a very good agreement. TD-DFT calculations of electronic absorption spectra of the studied Mn complexes and the strongly pi-delocalized reference compound [Fe(CO)(3)(Me-DAB)] have reproduced qualitatively well the experimental spectra. Analyses of the computed electronic transitions in the visible spectroscopic region show that the lowest-energy absorption band always contains a dominant (in some cases almost exclusive) contribution from a pi(HOMO) -> pi*(LUMO) transition within the MnL2 metallacycle. The character of this optical excitation depends strongly on the composition of the frontier orbitals, varying from a partial L-2 -> Mn charge transfer (LMCT) through a fully delocalized pi(MnL2) -> pi*(MnL2) situation to a mixed (CO)Mn -> L-2 charge transfer (LLCT/MLCT). The latter character is most apparent in the case of the reference complex [Fe(CO)(3)(Me-DAB)]. The higher-lying, usually strongly mixed electronic transitions in the visible absorption region originate in the three lower-lying occupied orbitals, HOMO - 1 to HOMO - 3, with significant metal-d contributions. Assignment of these optical excitations to electronic transitions of a specific type is difficult. A partial LLCT/MLCT character is encountered most frequently. The electronic absorption spectra become more complex when the chelating ligand L-2, such as 2,2'-bipyridine, features two or more closely spaced low-lying empty pi* orbitals.
Resumo:
The coordination of design is a multi-faceted problem in construction. In design interactions in particular the real-time coordination of design activity is a persistent concern. The use of objects to coordinate the activity of design is studied as this happens in interactions between an architect and a building user group, in a setting where maintaining awareness of the design situation is important. An account of ways in which this was accomplished and how design activity is coordinated through interactional practices is provided. The empirical analyses examine design interaction from an ethnomethodological/conversation analysis (EM/CA) informed perspective to examine: ways in which mutual orientation to design issues are accomplished, how objects can provide a resource for the recognition of the activities of others and ways in which objects might be observable as momentarily intelligible. Subtle interactional practices involving talk, gesture and gaze were some of the small ways in which mutual orientation to the design actions of others became observable. The production of actions sequentially, in response to another's action, marked the real-time coordination of design moves in this setting. The relevance of accounts of micro-interaction to develop understanding of design activity and how it is coordinated are considered.
Resumo:
The present study reports results from two investigations to determine effects of a 6-week period of moderate n-3 fatty acid supplementation (2.7 g/d) on fasting and on postprandial triacylglycerol and metabolic hormone concentrations in response to standard test meals. In the first study postprandial responses were followed for 210 min after an early morning test meal challenge; in the second study responses to an evening test meal were followed during the evening and overnight for a total period of 12 h. In both studies postprandial triacylglycerol responses to the test meals were significantly reduced after compared with before fish-oil supplementation. In the second study the triacylglycerol peak response seen between 200 and 400 min in subjects studied before supplementation with fish oils was almost completely absent in the same subjects after 6 weeks of n-3 fatty acid supplementation. Analysis of fasting concentrations of metabolites and hormones was carried out on the combined data from the two studies. There were no significant differences in total, low-density-lipoprotein- or high-density-lipoprotein-cholesterol concentrations during fish-oil supplementation, although there was considerable individual variation in cholesterol responses to the supplement. Concentrations of Apo-B and Apo-A1 were unchanged during supplementation with fish oils. Fasting and early morning postprandial GIP concentrations were lower in subjects taking fish oils, possibly due to acute effects of fish-oil capsules taken on the evening before the studies. In both studies fasting insulin and glucose and postprandial insulin concentrations remained unchanged following fish-oil supplementation. The results do not support the view that triacylglycerol-lowering effects of n-3 fatty acids are due to modulation of insulin secretion mediated via the enteroinsular axis. Further studies are required to determine the precise mechanism by which fish oils reduce both fasting and postprandial triacylglycerol concentrations.
Resumo:
Four new cadmium(II) complexes [Cd-2(bz)(4)(H2O)(4)(mu 2-hmt)]center dot Hbz center dot H2O (1), [Cd-3(bz)(6)(H2O)(6)(mu 2-hmt)(2)]center dot 6H(2)O (2), [Cd(pa)(2)(H2O)(mu(2)-hmt)](n) (3), and {[Cd-3(ac)(6)(H2O)(3)(mu(3)-hmt)(2)]center dot 6H(2)O}(n) (4) with hexamine (hmt) and monocarboxylate ions, benzoate (bz), phenylacetate (pa), or acetate (ac) have been synthesized and characterized structurally. Structure determinations reveal that 1 is dinuclear, 2 is trinuclear, 3 is a one-dimensional (1D) infinite chain, and 4 is a two-dimensional (2D) polymer with fused hexagonal rings consisting of Cd-II and hmt. All the Cd-II atoms in the four complexes (except one CdII in 2) possess seven-coordinate pentagonal bipyramidal geometry with the various chelating bidentate carboxylate groups in equatorial sites. One of the CdII ions in 2, a complex that contains two monodentate carboxylates is in a distorted octahedral environment. The bridging mode of hmt is mu 2- in complexes 1-3 but is mu 3- in complex 4. In all complexes, there are significant numbers of H-bonds, C-H/pi, and pi-pi interactions which play crucial roles in forming the supramolecular networks. The importance of the noncovalent interactions in terms of energies and geometries has been analyzed using high level ab initio calculations. The effect of the cadmium coordinated to hmt on the energetic features of the C-H/pi interaction is analyzed. Finally, the interplay between C-H/pi and pi-pi interactions observed in the crystal structure of 3 is also studied.
Resumo:
Root-knot nematodes (Meloidogyne spp.) are the most significant plant-parasitic nematodes that damage many crops all over the world. The free-living second stage juvenile (J2) is the infective stage that enters plants. The J2s move in the soil water films to reach the root zone. The bacterium Pasteuria penetrans is an obligate parasite of root-knot nematodes, is cosmopolitan, frequently encountered in many climates and environmental conditions and is considered promising for the control of Meloidogyne spp. The infection potential of P. penetrans to nematodes is well studied but not the attachment effects on the movement of root-knot nematode juveniles, image analysis techniques were used to characterize movement of individual juveniles with or without P. penetrans spores attached to their cuticles. Methods include the study of nematode locomotion based on (a) the centroid body point, (b) shape analysis and (c) image stack analysis. All methods proved that individual J2s without P. penetrans spores attached have a sinusoidal forward movement compared with those encumbered with spores. From these separate analytical studies of encumbered and unencumbered nematodes, it was possible to demonstrate how the presence of P. penetrans spores on a nematode body disrupted the normal movement of the nematode.
Resumo:
The adsorption of carbon monoxide on the Pt{110} surface at coverages of 0.5 ML and 1.0 ML was investigated using quantitative low-energy electron diffraction (LEED IV) and density-functional theory (DFT). At 0.5 ML CO lifts the reconstruction of the clean surface but does not form an ordered overlayer. At the saturation coverage, 1.0 ML, a well-ordered p(2×1) superstructure with glide line symmetry is formed. It was confirmed that the CO molecules adsorb on top of the Pt atoms in the top-most substrate layer with the molecular axes tilted by ±22° with respect to the surface normal in alternating directions away from the close packed rows of Pt atoms. This is accompanied by significant lateral shifts of 0.55 Å away from the atop sites in the same direction as the tilt. The top-most substrate layer relaxes inwards by −4% with respect to the bulk-terminated atom positions, while the consecutive layers only show minor relaxations. Despite the lack of long-range order in the 0.5 ML CO layer it was possible to determine key structural parameters by LEED IV using only the intensities of the integer-order spots. At this coverage CO also adsorbs on atop sites with the molecular axis closer to the surface normal (b10°). The average substrate relaxations in each layer are similar for both coverages and consistent with DFT calculations performed for a variety of ordered structures with coverages of 1.0 ML and 0.5 ML.
Resumo:
Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled � ight. The construction of a robust closed-loop control that extends the stable and decoupled � ight envelope as far as possible is pursued. For the study of these systems, nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and to investigate control effects on dynamic behavior. Linear feedback control designs constructed by eigenstructure assignment methods at a � xed � ight condition are investigated for a simple nonlinear aircraft model. Bifurcation analysis, in conjunction with linear control design methods, is shown to aid control law design for the nonlinear system.
Resumo:
Bran is hygroscopic and competes actively for water with other key components in baked cereal products like starch and gluten. Thermogravimetric analysis (TGA) of flour–water mixtures enriched with bran at different incorporation levels was performed to characterise the release of compartmentalised water. TGA investigations showed that the presence of bran increased compartmentalised water, with the measurement of an increase of total water loss from 58.30 ± 1.93% for flour only systems to 71.80 ± 0.37% in formulations comprising 25% w/w bran. Deconvolution of TGA profiles showed an alteration of the distribution of free and bound water, and its interaction with starch and gluten, within the formulations. TGA profiles showed that water release from bran-enriched flour is a prolonged event with respect to the release from non-enriched flour, which suggests the possibility that bran may interrupt the normal characteristic processes of texture formation that occur in non-enriched products.