948 resultados para neuropathic severity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this study were to determine the nature of the relationship between severity of iron deficiency anemia, response to iron treatment, respiratory and gastrointestinal illness and weight change. Seventy-five pre-school children from rural Guatemala received daily oral iron therapy for an eleven week period, and were classified into one of three groups having different degrees of iron deficiency anemia. Anthropometric and biochemical data were collected prior and after iron treatment; morbidity data were collected throughout the period of treatment. The outcome variables were percentage weight change, percentage of total days ill with any type of symptom, percentage of total days ill with gastrointestinal symptoms, percentage of total days ill with respiratory symptoms, percentage of total days ill with combination syndrome symptoms. Age, sex and socio-economic status, were independent of any of the independent or outcome variables used. On the other hand, the level of hemoglobin covaried with the height of the children, the smallest children were the most severely anemic. The relationships between hemoglobin levels and weight change, frequency of morbidity (gastrointestinal, respiratory and combination syndrome) and total number of days ill with any symptomatology were investigated. No statistical significance was found in these analyses except when contrasting children with normal hemoglobin levels to iron deficient children, where the findings indicated the normal children experienced more gastrointestinal morbidity. The same relationship were again analyzed but including delta hemoglobin as covariate in the analysis, this latter one was found to be significant at 7% when the percentage of days ill from gastrointestinal morbidity was tested against the hemoglobin groups. The relationship found indicates that, all other covariates accounted for, the percentage of days ill from gastrointestinal morbidity will decrease approximately 1% for each 1% increase in delta of hemoglobin. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients living with a spinal cord injury (SCI) often develop chronic neuropathic pain (CNP). Unfortunately, the clinically approved, current standard of treatment, gabapentin, only provides temporary pain relief. This treatment can cause numerous adverse side effects that negatively affect the daily lives of SCI patients. There is a great need for alternative, effective treatments for SCI-dependent CNP. Minocycline, an FDA-approved antibiotic, has been widely prescribed for the treatment of acne for several decades. However, recent studies demonstrate that minocycline has neuroprotective properties in several pre-clinical rodent models of CNS trauma and disease. Pre-clinical studies also show that short-term minocycline treatment can prevent the onset of CNP when delivered during the acute stage of SCI and can also transiently attenuate established CNP when delivered briefly during the chronic stage of SCI. However, the potential to abolish or attenuate CNP via long-term administration of minocycline after SCI is unknown. The purpose of this study was to investigate the potential efficacy and safety of long-term administration of minocycline to abolish or attenuate CNP following SCI. A severe spinal contusion injury was administered on adult, male, Sprague-Dawley rats. At day 29 post-injury, I initiated a three-week treatment regimen of daily administration with minocycline (50 mg/kg), gabapentin (50 mg/kg) or saline. The minocycline treatment group demonstrated a significant reduction in below-level mechanical allodynia and above- level hyperalgesia while on their treatment regimen. After a ten-day washout period of minocycline, the animals continued to demonstrate a significant reduction in below-level mechanical allodynia and above-level hyperalgesia. However, minocycline-treated animals exhibited abnormal weight gain and hepatotoxicity compared to gapabentin-treated or vehicle-treated subjects.The results support previous findings that minocycline can attenuate CNP after SCI and suggested that minocycline can also attenuate CNP via long-term delivery of minocycline after SCI (36). The data also suggested that minocycline had a lasting effect at reducing pain symptoms. However, the adverse side effects of long-term use of minocycline should not be ignored in the rodent model. Gabapentin treatment caused a significant decrease in below-level mechanical allodynia and below-level hyperalgesia during the treatment regimen. Because gabapentin treatment has an analgesic effect at the concentration I administered, the results were expected. However, I also found that gabapentin-treated animals demonstrated a sustained reduction in pain ten days after treatment withdrawal. This result was unexpected because gabapentin has a short half-life of 1.7 hours in rodents and previous studies have demonstrated that pre-drug pain levels return shortly after withdrawal of treatment. Additionally, the gabapentin-treated animals demonstrated a significant and sustained increase in rearing events compared with all other treatment groups which suggested that gabapentin treatment was not only capable of reducing pain long-term but may also significantly improve trunk stability or improve motor function recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed the abundance of Scots pine regeneration in a 257 ha wildfire in an inner-alpine forest. We sampled regeneration, percent soil cover by classes, physical and chemical properties of topsoils (A horizon, 0-5 cm) under four fire severity levels (unburned, moderate, moderate/high, high severity). 5 plots per severity level, circular (R= 3m). Analysis methods for soil properties as described in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diseases that affect garlic during storage can lead to severe economic losses for farmers worldwide. One causal agent of clove rot is Fusarium proliferatum. Here, the progress of clove rot caused by F. proliferatum and its dependence on different storage conditions and cultivar type were studied. The effect of temperature on mycelial growth, conidial viability, and fungal survival during garlic commercial storage was documented. Samples of 50 bulbs from a randomized field trial with three different clonal generations for purple garlic (F3, F4 and F5) and the F4 clonal generation for white garlic were labeled and stored for two months (short-term storage). In addition, another sample of the F5 clonal generation of purple garlic was stored for 6 months after harvest (long-term storage). The presence of the pathogen and the percentage of symptomatic cloves were evaluated. A notable difference in the rot severity index (RSI) of different garlic varieties was observed. In all studied cases, clove rot increased with storage time at 20 ◦ C, and the white garlic variety had a higher index of rot severity after two months of storage. Additionally, there were clear differences between the growth rates of F. proliferatum isolates. Studies conducted on the temperature responses of the pathogen propagules showed that expo- sure for at least 20 min at 50 ◦ C was highly effective in significantly reducing the viability of fungal conidia. Pathogenicity studies showed that the fungus is pathogenic in all commercial varieties. However, there were significant differences in varietal susceptibility between Chinese and white garlic type cultivars (81.84 ± 16.44% and 87.5 ± 23.19% symptomatic cloves, respectively) and purple cultivars (49.06 ± 13.42% symptomatic cloves)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleolar dominance is an epigenetic phenomenon in which one parental set of ribosomal RNA (rRNA) genes is silenced in an interspecific hybrid. In natural Arabidopsis suecica, an allotetraploid (amphidiploid) hybrid of Arabidopsis thaliana and Cardaminopsis arenosa, the A. thaliana rRNA genes are repressed. Interestingly, A. thaliana rRNA gene silencing is variable in synthetic Arabidopsis suecica F1 hybrids. Two generations are needed for A. thaliana rRNA genes to be silenced in all lines, revealing a species-biased direction but stochastic onset to nucleolar dominance. Backcrossing synthetic A. suecica to tetraploid A. thaliana yielded progeny with active A. thaliana rRNA genes and, in some cases, silenced C. arenosa rRNA genes, showing that the direction of dominance can be switched. The hypothesis that naturally dominant rRNA genes have a superior binding affinity for a limiting transcription factor is inconsistent with dominance switching. Inactivation of a species-specific transcription factor is argued against by showing that A. thaliana and C. arenosa rRNA genes can be expressed transiently in the other species. Transfected A. thaliana genes are also active in A. suecica protoplasts in which chromosomal A. thaliana genes are repressed. Collectively, these data suggest that nucleolar dominance is a chromosomal phenomenon that results in coordinate or cooperative silencing of rRNA genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thalassemia is a heritable human anemia caused by a variety of mutations that affect expression of the α- or the β-chain of hemoglobin. The expressivity of the phenotype is likely to be influenced by unlinked modifying genes. Indeed, by using a mouse model of α-thalassemia, we find that its phenotype is strongly influenced by the genetic background in which the α-thalassemia mutation resides [129sv/ev/129sv/ev (severe) or 129sv/ev/C57BL/6 (mild)]. Linkage mapping indicates that the modifying gene is very tightly linked to the β-globin locus (Lod score = 13.3). Furthermore, the severity of the phenotype correlates with the size of β-chain-containing inclusion bodies that accumulate in red blood cells and likely accelerate their destruction. The β-major globin chains encoded by the two strains differ by three amino acids, one of which is a glycine-to-cysteine substitution at position 13. The Cys-13 should be available for interchain disulfide bridging and consequent aggregation between excess β-chains. This normal polymorphic variation between murine β-globin chains could account for the modifying action of the unlinked β-globin locus. Here, the variation in severity of the phenotype would not depend on a change in the ratio between α- and β-chains but on the chemical nature of the normal β-chain, which is in excess. This work also indicates that modifying genes can be normal variants that—absent an apparent physiologic rationale—may be difficult to identify on the basis of structure alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary hemochromatosis (HH) is a common disorder of iron metabolism caused by mutation in HFE, a gene encoding an MHC class I-like protein. Clinical studies demonstrate that the severity of iron loading is highly variable among individuals with identical HFE genotypes. To determine whether genetic factors other than Hfe genotype influence the severity of iron loading in the murine model of HH, we bred the disrupted murine Hfe allele onto three different genetically defined mouse strains (AKR, C57BL/6, and C3H), which differ in basal iron status and sensitivity to dietary iron loading. Serum transferrin saturations (percent saturation of serum transferrin with iron), hepatic and splenic iron concentrations, and hepatocellular iron distribution patterns were compared for wild-type (Hfe +/+), heterozygote (Hfe +/−), and knockout (Hfe −/−) mice from each strain. Although the Hfe −/− mice from all three strains demonstrated increased transferrin saturations and liver iron concentrations compared with Hfe +/+ mice, strain differences in severity of iron accumulation were striking. Targeted disruption of the Hfe gene led to hepatic iron levels in Hfe −/− AKR mice that were 2.5 or 3.6 times higher than those of Hfe −/− C3H or Hfe −/− C57BL/6 mice, respectively. The Hfe −/− mice also demonstrated strain-dependent differences in transferrin saturation, with the highest values in AKR mice and the lowest values in C3H mice. These observations demonstrate that heritable factors markedly influence iron homeostasis in response to Hfe disruption. Analysis of mice from crosses between C57BL/6 and AKR mice should allow the mapping and subsequent identification of genes modifying the severity of iron loading in this murine model of HH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary hemochromatosis (HH) is a common chronic human genetic disorder whose hallmark is systemic iron overload. Homozygosity for a mutation in the MHC class I heavy chain paralogue gene HFE has been found to be a primary cause of HH. However, many individuals homozygous for the defective allele of HFE do not develop iron overload, raising the possibility that genetic variation in modifier loci contributes to the HH phenotype. Mice deficient in the product of the β2-microglobulin (β2M) class I light chain fail to express HFE and other MHC class I family proteins, and they have been found to manifest many characteristics of the HH phenotype. To determine whether natural genetic variation plays a role in controlling iron overload, we performed classical genetic analysis of the iron-loading phenotype in β2M-deficient mice in the context of different genetic backgrounds. Strain background was found to be a major determinant in iron loading. Sex played a role that was less than that of strain background but still significant. Resistance and susceptibility to iron overload segregated as complex genetic traits in F1 and back-cross progeny. These results suggest the existence of naturally variant autosomal and Y chromosome-linked modifier loci that, in the context of mice genetically predisposed by virtue of a β2M deficiency, can profoundly influence the severity of iron loading. These results thus provide a genetic explanation for some of the variability of the HH phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compelling evidence has accumulated over the last several years from our laboratory, as well as others, indicating that central hyperactive states resulting from neuronal plastic changes within the spinal cord play a critical role in hyperalgesia associated with nerve injury and inflammation. In our laboratory, chronic constriction injury of the common sciatic nerve, a rat model of neuropathic pain, has been shown to result in activation of central nervous system excitatory amino acid receptors and subsequent intracellular cascades including protein kinase C translocation and activation, nitric oxide production, and nitric oxide-activated poly(ADP ribose) synthetase activation. Similar cellular mechanisms also have been implicated in the development of tolerance to the analgesic effects of morphine. A recently observed phenomenon, the development of “dark neurons,” is associated with both chronic constriction injury and morphine tolerance. A site of action involved in both hyperalgesia and morphine tolerance is in the superficial laminae of the spinal cord dorsal horn. These observations suggest that hyperalgesia and morphine tolerance may be interrelated at the level of the superficial laminae of the dorsal horn by common neural substrates that interact at the level of excitatory amino acid receptor activation and subsequent intracellular events. The demonstration of interrelationships between neural mechanisms underlying hyperalgesia and morphine tolerance may lead to a better understanding of the neurobiology of these two phenomena in particular and pain in general. This knowledge may also provide a scientific basis for improved pain management with opiate analgesics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Funding: This work was supported by funding awards to Dr Isabel Crane from the National Eye Research Centre, Bristol, UK (Grant ref. SCIAD 058); and NHS Grampian Endowment Trust (Grant ref. 10/16). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.