902 resultados para neurological
Resumo:
Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.
Resumo:
We reviewed our surgery registry, to identify predictive risk factors for operative results, and to analyse the long-term survival outcome in octogenarians operated for primary isolated aortic valve replacement (AVR). A total of 124 consecutive octogenarians underwent open AVR from January 1990 to December 2005. Combined procedures and redo surgery were excluded. Selected variables were studied as risk factors for hospital mortality and early neurological events. A follow-up (FU; mean FU time: 77 months) was obtained (90% complete), and Kaplan-Meier plots were used to determine survival rates. The mean age was 82+/-2.2 (range: 80-90 years; 63% females). Of the group, four patients (3%) required urgent procedures, 10 (8%) had a previous myocardial infarction, six (5%) had a previous coronary angioplasty and stenting, 13 patients (10%) suffered from angina and 59 (48%) were in the New York Heart Association (NYHA) class III-IV. We identified 114 (92%) degenerative stenosis, six (5%) post-rheumatic stenosis and four (3%) active endocarditis. The predicted mortality calculated by logistic European System for Cardiac Operative Risk Evaluation (EuroSCORE) was 12.6+/-5.7%, and the observed hospital mortality was 5.6%. Causes of death included severe cardiac failure (four patients), multi-organ failure (two) and sepsis (one). Complications were transitory neurological events in three patients (2%), short-term haemodialysis in three (2%), atrial fibrillation in 60 (48%) and six patients were re-operated for bleeding. Atrio-ventricular block, myocardial infarction or permanent stroke was not detected. The age at surgery and the postoperative renal failure were predictors for hospital mortality (p value <0.05), whereas we did not find predictors for neurological events. The mean FU time was 77 months (6.5 years) and the mean age of surviving patients was 87+/-4 years (81-95 years). The actuarial survival estimates at 5 and 10 years were 88% and 50%, respectively. Our experience shows good short-term results after primary isolated standard AVR in patients more than 80 years of age. The FU suggests that aortic valve surgery in octogenarians guarantees satisfactory long-term survival rates and a good quality of life, free from cardiac re-operations. In the era of catheter-based aortic valve implantation, open-heart surgery for AVR remains the standard of care for healthy octogenarians.
Resumo:
Any primary care doctor should be able to decide on the fitness to drive of a given patient. The issue of an older driver, patients addicted to alcohol or drugs, under current psychotropic drug treatment, or diabetic, is discussed in the light of legal provisions and current recommendations. This article also discusses aspects associated with neurological, cardiac and orthopedic issues.
Resumo:
Preterm children born before 32 weeks of gestation represent 1% of the annual births in Switzerland, and are the most at risk of neurodevelopmental disabilities. A neurological surveillance is thus implemented in the neonatal units, and multidisciplinary neurodevelopmental follow-up is offered to all our preterm patients. The follow-up clinics of the University hospitals in Lausanne and Geneva follow the Swiss guidelines for follow-up. An extended history and neurological examination is taken at each appointment, and a standardized test of development is performed. These examinations, which take place between the ages of 3 months and 9 years old, allow the early identification and treatment of developmental disorders frequent in this population, such as motor, cognitive or behavioral disorders, as well as the monitoring of the quality of neonatal care.
Resumo:
In the present study, we evaluated stimulation of the angiotensin type 2 receptor (AT2R) by the selective non-peptide agonist Compound 21 (C21) as a novel therapeutic concept for the treatment of multiple sclerosis using the model of experimental autoimmune encephalomyelitis (EAE) in mice. C57BL-6 mice were immunized with myelin-oligodendrocyte peptide and treated for 4 weeks with C21 (0.3 mg/kg/day i.p.). Potential effects on myelination, microglia and T-cell composition were estimated by immunostaining and FACS analyses of lumbar spinal cords. The in vivo study was complemented by experiments in aggregating brain cell cultures and microglia in vitro. In the EAE model, treatment with C21 ameliorated microglia activation and decreased the number of total T-cells and CD4+ T-cells in the spinal cord. Fluorescent myelin staining of spinal cords further revealed a significant reduction in EAE-induced demyelinated areas in lumbar spinal cord tissue after AT2R stimulation. C21-treated mice had a significantly better neurological score than vehicle-treated controls. In aggregating brain cell cultures challenged with lipopolysaccharide (LPS) plus interferon-γ (IFNγ), AT2R stimulation prevented demyelination, accelerated re-myelination and reduced the number of microglia. Cytokine synthesis and nitric oxide production by microglia in vitro were significantly reduced after C21 treatment. These results suggest that AT2R stimulation protects the myelin sheaths in autoimmune central nervous system inflammation by inhibiting the T-cell response and microglia activation. Our findings identify the AT2R as a potential new pharmacological target for demyelinating diseases such as multiple sclerosis.
Resumo:
Drug abuse is a widespread problem affecting both teenagers and adults. Nitrous oxide is becoming increasingly popular as an inhalation drug, causing harmful neurological and hematological effects. Some gas chromatography-mass spectrometry (GC-MS) methods for nitrous oxide measurement have been previously described. The main drawbacks of these methods include a lack of sensitivity for forensic applications; including an inability to quantitatively determine the concentration of gas present. The following study provides a validated method using HS-GC-MS which incorporates hydrogen sulfide as a suitable internal standard allowing the quantification of nitrous oxide. Upon analysis, sample and internal standard have similar retention times and are eluted quickly from the molecular sieve 5Å PLOT capillary column and the Porabond Q column therefore providing rapid data collection whilst preserving well defined peaks. After validation, the method has been applied to a real case of N2O intoxication indicating concentrations in a mono-intoxication.
Resumo:
BACKGROUND: Type 1 pseudohypoaldosteronism (PHA1) is a salt-wasting syndrome caused by mineralocorticoid resistance. Autosomal recessive and dominant hereditary forms are caused by Epithelial Na Channel and Mineralocorticoid Receptor mutation respectively, while secondary PHA1 is usually associated with urological problems. METHODS: Ten patients were studied in four French pediatric units in order to characterize PHA1 spectrum in infants. Patients were selected by chart review. Genetic, clinical and biochemistry data were collected and analyzed. RESULTS: Autosomal recessive PHA1 (n = 3) was diagnosed at 6 and 7 days of life in three patients presenting with severe hyperkalaemia and weight loss. After 8 months, 3 and 5 years on follow-up, neurological development and longitudinal growth was normal with high sodium supplementation. Autosomal dominant PHA1 (n = 4) was revealed at 15, 19, 22 and 30 days of life because of failure to thrive. At 8 months, 3 and 21 years of age, longitudinal growth was normal in three patients who were given salt supplementation; no significant catch-up growth was obtained in the last patient at 20 months of age. Secondary PHA1 (n = 3) was diagnosed at 11, 26 days and 5 months of life concomitantly with acute pyelonephritis in three children with either renal hypoplasia, urinary duplication or bilateral megaureter. The outcome was favourable and salt supplementation was discontinued after 3, 11 and 13 months. CONCLUSIONS: PHA1 should be suspected in case of severe hyperkalemia and weight loss in infants and need careful management. Pathogenesis of secondary PHA1 is still challenging and further studies are mandatory to highlight the link between infection, developing urinary tract and pseudohypoaldosteronism.
Resumo:
Brain metastases occur in 20-50% of NSCLC and 50-80% of SCLC. In this review, we will look at evidence-based medicine data and give some perspectives on the management of BM. We will address the problems of multiple BM, single BM and prophylactic cranial irradiation. Recursive Partitioning Analysis (RPA) is a powerful prognostic tool to facilitate treatment decisions. Dealing with multiple BM, the use of corticosteroids was established more than 40 years ago by a unique randomized trial (RCT). Palliative effect is high (_80%) as well as side-effects. Whole brain radiotherapy (WBRT) was evaluated in many RCTs with a high (60-90%) response rate; several RT regimes are equivalent, but very high dose per fraction should be avoided. In multiple BM from SCLC, the effect of WBRT is comparable to that in NSCLC but chemotherapy (CXT) although advocated is probably less effective than RT. Single BM from NSCLC occurs in 30% of all BM cases; several prognostic classifications including RPA are very useful. Several options are available in single BM: WBRT, surgery (SX), radiosurgery (RS) or any combination of these. All were studied in RCTs and will be reviewed: the addition of WBRT to SX or RS gives a better neurological tumour control, has little or no impact on survival, and may be more toxic. However omitting WBRT after SX alone gives a higher risk of cerebro-spinal fluid dissemination. Prophylactic cranial irradiation (PCI) has a major role in SCLC. In limited disease, meta-analyses have shown a positive impact of PCI in the decrease of brain relapse and in survival improvement, especially for patients in complete remission. Surprisingly, this has been recently confirmed also in extensive disease. Experience with PCI for NSCLC is still limited, but RCT suggest a reduction of BM with no impact on survival. Toxicity of PCI is a matter of debate, as neurological or neuro-cognitive impairment is already present prior to PCI in almost half of patients. However RT toxicity is probably related to total dose and dose per fraction. Perspectives : Future research should concentrate on : 1) combined modalities in multiple BM. 2) Exploration of treatments in oligo-metastases. 3) Further exploration of PCI in NSCLC. 4) Exploration of new, toxicity-sparing radiotherapy techniques (IMRT, Tomotherapy etc).
Resumo:
Anti-N-methyl-d-aspartate (anti-NMDA) receptor encephalitis likely has a wider clinical spectrum than previously recognized. This article reports a previously healthy 16-year-old girl who was diagnosed with anti-NMDA receptor encephalitis 3 months after onset of severe depression with psychotic features. She had no neurological manifestations, and cerebral magnetic resonance imaging (MRI) was normal. Slow background on electroencephalogram and an oligoclonal band in the cerebrospinal fluid prompted the search for anti-NMDA receptor antibodies. She markedly improved over time but remained with mild neuropsychological sequelae after a trial of late immunotherapy. Only a high index of suspicion enables recognition of the milder forms of the disease masquerading as primary psychiatric disorders.
Resumo:
In recent years research explored different acupuncture stimulation techniques but interest has focused primarily on somatic acupuncture and on a limited number of acupoints. As regards ear Acupuncture (EA) there is still some criticism about the clinical specificity of auricular points/areas representing organs or structures of the body. The aim of this study was to verify through (Functional magnetic resonance imaging) fMRI the hypothesis of EA point specificity using two auricular points having different topographical locations and clinical significance. Six healthy volunteers underwent two experimental fMRI sessions: the first was dedicated to the stimulation of Thumb Auricular Acupoint (TAA) and the second to the stimulation of Brain Stem Auricular Acupoint (BSAA). The stimulation of the needle placed in the TAA of the left ear produced an increase in activation bilaterally in the parietal operculum, region of the secondary somatosensory area SII. Stimulation of the needle placed in the BSAA of the left ear showed a pattern that largely overlapped regions belonging to the pain matrix, as shown to be involved in previous somatic acupuncture studies but with local differences in the left amygdala, anterior cingulate cortex, and cerebellum. The differences in activation patterns between TAA and BSAA stimulation support the specificity of the two acupoints. Moreover, the peculiarity of the regions involved in BSAA stimulation compared to those involved in the pain matrix, is in accordance with the therapeutic indications of this acupoint that include head pain, dizziness and vertigo. Our results provide preliminary evidence on the specificity of two auricular acupoints; further research is warranted by means of fMRI both in healthy volunteers and in patients carrying neurological/psychiatric syndromes.
Resumo:
The most frequent clinical manifestation of borreliosis in Switzerland is erythema migrans, with about 2500 patients each year. Neurological manifestations are rare, mostly hyperalgesic radiculitis (Bannwarth syndrome), aseptic meningitis or cranial nerve involvement. We report the first Swiss patient with meningovasculitis due to neuroborreliosis, with recurrent multiple ischemic strokes in multiple vascular territories. The treatment with ceftriaxone stopped the progression, but the patient is still suffering from severe invalidating cognitive disorders. We also comment on the pathophysiology and review the literature of other clinical cases.
Resumo:
Current American Academy of Neurology (AAN) guidelines for outcome prediction in comatose survivors of cardiac arrest (CA) have been validated before the therapeutic hypothermia era (TH). We undertook this study to verify the prognostic value of clinical and electrophysiological variables in the TH setting. A total of 111 consecutive comatose survivors of CA treated with TH were prospectively studied over a 3-year period. Neurological examination, electroencephalography (EEG), and somatosensory evoked potentials (SSEP) were performed immediately after TH, at normothermia and off sedation. Neurological recovery was assessed at 3 to 6 months, using Cerebral Performance Categories (CPC). Three clinical variables, assessed within 72 hours after CA, showed higher false-positive mortality predictions as compared with the AAN guidelines: incomplete brainstem reflexes recovery (4% vs 0%), myoclonus (7% vs 0%), and absent motor response to pain (24% vs 0%). Furthermore, unreactive EEG background was incompatible with good long-term neurological recovery (CPC 1-2) and strongly associated with in-hospital mortality (adjusted odds ratio for death, 15.4; 95% confidence interval, 3.3-71.9). The presence of at least 2 independent predictors out of 4 (incomplete brainstem reflexes, myoclonus, unreactive EEG, and absent cortical SSEP) accurately predicted poor long-term neurological recovery (positive predictive value = 1.00); EEG reactivity significantly improved the prognostication. Our data show that TH may modify outcome prediction after CA, implying that some clinical features should be interpreted with more caution in this setting as compared with the AAN guidelines. EEG background reactivity is useful in determining the prognosis after CA treated with TH.
Resumo:
BACKGROUND: Acute treatment of ischemic stroke patients presenting more than eight-hours after symptom onset remains limited and largely unproven. Partial aortic occlusion using the NeuroFlo catheter can augment cerebral perfusion in animals. We investigated the safety and feasibility of employing this novel catheter to treat ischemic stroke patients eight-hours to 24 h following symptom onset. METHODS: A multicenter, single-arm trial enrolled ischemic stroke patients at nine international academic medical centers. Eligibility included age 18-85 years old, National Institutes of Health stroke scale (NIHSS) score between four and 20, within eight-hours to 24 h after symptom onset, and perfusion-diffusion mismatch confirmed by magnetic resonance imaging. The primary outcome was all adverse events occurring from baseline to 30 days posttreatment. Secondary outcomes included stroke severity on neurological indices through 90 days. This study is registered with ClinicalTrials.gov, number NCT00436592. RESULTS: A total of 26 patients were enrolled. Of these, 25 received treatment (one excluded due to aortic morphology); five (20%) died. Favorable neurological outcome at 90 days (modified Rankin score 0-2 vs. 3-6) was associated with lower baseline NIHSS (P < 0·001) and with longer duration from symptom discovery to treatment. There were no symptomatic intracranial hemorrhages or parenchymal hematomas. Asymptomatic intracranial hemorrhage was visible on computed tomography in 32% and only on microbleed in another 20%. CONCLUSIONS: Partial aortic occlusion using the NeuroFlo catheter, a novel collateral therapeutic strategy, appears safe and feasible in stroke patients eight-hours to 24 h after symptom onset.
Resumo:
Since its introduction 16 years ago, the astrocyte-neuron lactate shuttle (ANLS) model has profoundly modified our understanding of neuroenergetics by bringing a cellular and molecular resolution. Praised or disputed, the concept has never ceased to attract attention, leading to critical advances and unexpected insights. Here, we summarize recent experimental evidence further supporting the main tenets of the model. Thus, evidence for distinct metabolic phenotypes between neurons (mainly oxidative) and astrocytes (mainly glycolytic) have been provided by genomics and classical metabolic approaches. Moreover, it has become clear that astrocytes act as a syncytium to distribute energy substrates such as lactate to active neurones. Glycogen, the main energy reserve located in astrocytes, is used as a lactate source to sustain glutamatergic neurotransmission and synaptic plasticity. Lactate is also emerging as a neuroprotective agent as well as a key signal to regulate blood flow. Characterization of monocarboxylate transporter regulation indicates a possible involvement in synaptic plasticity and memory. Finally, several modeling studies captured the implications of such findings for many brain functions. The ANLS model now represents a useful, experimentally based framework to better understand the coupling between neuronal activity and energetics as it relates to neuronal plasticity, neurodegeneration, and functional brain imaging.