516 resultados para neurobiology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The black tern (Anous minutus) uses a semi-precocial growth strategy. Terrestrial locomotor capacity occurs soon after hatching, but pectoral limb development is delayed and flight is not possible until about post-hatching day 50. A growth series (hatchlings to fledglings) was used to explore how limb musculoskeletal development varied with body mass. In the pelvic limb, bone lengths scaled isometrically or with negative allometry. Gastrocnemius muscle mass and the failure load and stiffness of the tibiotarsus scaled isometrically. In the pectoral limb, pectoralis and supracoracoideus muscle masses increased with strong positive allometry that was mirrored by increases in wing bone strength and stiffness. Bending strength (σult) and modulus (E) remained fairly constant throughout development to fledging for all limb bones. The moment of inertia (I) scaled with negative allometry for the tibiotarsus and with strong positive allometry in the wing bones. Differences in σult and E of the tibiotarsus between pre-fledged chicks and adults was due, primarily, to increases in bone density rather than increases in the moment of inertia of the skeletal elements, whereas σult of wing bones was a function of increases in both bone density and I. Early development of functional pelvic limbs in tree-nesting birds is relatively unusual, and presumably reflects a familial trait that does not appear to compromise breeding success in this species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the present study was to determine antipsychotic doses that achieve 80% striatal doparnine D-2-receptor occupancy for haloperidol, risperidone and olanzapine in rats. Wistar rats were treated with normal saline vehicle (controls), haloperidol (0.25 and 0.5 mg/kg/ day), risperidone (3, 5 and 6 mg/kg/day) and olanzapine (5 and 10 mg/kg/day) for 7 days via osmotic minipumps. Striatal and cerebellar tissue were collected and in vivo dopamine D2-receptor occupancies were determined using H-3-raclopride. The doses required to achieve dopamine D-2-receptor occupancy of 80% in 11- and 24-week old rats were: haloperidol 0.25 mg/kg/day, risperidone 5 mg/kg/day and olanzapine 10 mg/kg/day. (c) 2006 Elsevier B.V All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A quantitative comparison was made of both relative brain size (encephalization) and the relative development of five brain area of pelagic sharks and teleosts. Two integration areas (the telencephalon and the corpus cerebellum) and three sensory brain areas (the olfactory bulbs, optic tectum and octavolateralis area, which receive primary projections from the olfactory epithelium, eye and octavolateralis senses, respectively), in four species of pelagic shark and six species of pelagic teleost were investigated. The relative proportions of the three sensory brain areas were assessed as a proportion of the total 'sensory brain', while the two integration areas were assessed relative to the sensory brain. The allometric analysis of relative brain size revealed that pelagic sharks had larger brains than pelagic teleosts. The volume of the telencephalon was significantly larger in the sharks, while the corpus cerebellum was also larger and more heavily foliated in these animals. There were also significant differences in the relative development of the sensory brain areas between the two groups, with the sharks having larger olfactory bulbs and octavolateralis areas, whilst the teleosts had larger optic tecta. Cluster analysis performed on the sensory brain areas data confirmed the differences in the composition of the sensory brain in sharks and teleosts and indicated that these two groups of pelagic fishes had evolved different sensory strategies to cope with the demands of life in the open ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Australian lungfish Neoceratodus forsteri may be the closest living relative to the first tetrapods and yet little is known about their retinal ganglion cells. This study reveals that lungfish possess a heterogeneous population of ganglion cells distributed in a horizontal streak across the retinal meridian, which is formed early in development and maintained through to adult stages. The number and complement of both ganglion cells and a population of putative amacrine cells within the ganglion cell layer are examined using retrograde labelling from the optic nerve and transmission electron-microscopic analysis of axons within the optic nerve. At least four types of retinal ganglion cells are present and lie predominantly within a thin ganglion cell layer, although two subpopulations are identified, one within the inner plexiform and the other within the inner nuclear layer. A subpopulation of retinal ganglion cells comprising up to 7% or the total population are significantly larger (> 400 mu m(2)) and are characterized as giant or alpha-like cells. Up to 44% of cells within the retinal ganglion cell layer represent a population of presumed amacrine cells. The optic nerve is heavily fasciculated and the proportion of myelinated axons increases with body length from 17% in subadults to 74% in adults. Spatial resolving power, based on ganglion cell spacing, is low (1.6-1.9 cycles deg(-1), n = 2) and does not significantly increase with growth. This represents the first detailed study of retinal ganglion cells in sarcopterygian fish, and reveals that, despite variation amongst animal groups, trends in ganglion cell density distribution and characteristics of cell types were defined early in vertebrate evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gonodactyloid stomatopod crustaceans possess polarization vision, which enables them to discriminate light of different e-vector angle. Their unusual apposition compound eyes are divided by an equatorial band of six rows of enlarged, structurally modified ommatidia, the mid-band (MB). The rhabdoms of the two most ventral MB rows 5 and 6 are structurally designed for polarization vision. Here we show, with electrophysiological recordings, that the photoreceptors R1-R7 within these two MB rows in Gonodactylus chiragra are highly sensitive to linear polarized light of two orthogonal directions (PS=6.1). They possess a narrow spectral sensitivity peaking at 565 nm. Unexpectedly, photoreceptors within the distal rhabdomal tier of MB row 2 also possess highly sensitive linear polarization receptors, which are in their spectral and polarization characteristics similar to the receptors of MB rows 5 and 6. Photoreceptors R1-R7 within the remainder of the MB exhibit low polarization sensitivity (PS=2.3). Outside the MB, in the two hemispheres, R1-R7 possess medium linear polarization sensitivity (PS=3.8) and a broad spectral sensitivity peaking at around 500 nm, typical for most crustaceans. Throughout the retina the most distally situated UV-sensitive R8 cells are not sensitive to linear polarized light.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cone photoreceptors of many vertebrates contain spherical organelles called oil droplets. In birds, turtles, lizards and some lungfish the oil droplets are heavily pigmented and function to filter the spectrum of light incident upon the visual pigment within the outer segment. Pigmented oil droplets are beneficial for colour discrimination in bright light, but at lower light levels the reduction in sensitivity caused by the pigmentation increasingly outweighs the benefits generated by spectral tuning. Consequently, it is expected that species with pigmented oil droplets should modulate the density of pigment in response to ambient light intensity and thereby regulate the amount of light transmitted to the outer segment. In this study, microspectrophotometry was used to measure the absorption spectra of cone oil droplets in chickens (Gallus gallus domesticus) reared under bright (unfiltered) or dim (filtered) sunlight. Oil droplet pigmentation was found to be dependent on the intensity of the ambient light and the duration of exposure to the different lighting treatments. In adult chickens reared in bright light, the oil droplets of all cone types (except the violet-sensitive single cones, whose oil droplet is always non-pigmented) were more densely pigmented than those in chickens reared in dim light. Calculations show that the reduced levels of oil droplet pigmentation in chickens reared in dim light would increase the sensitivity and spectral bandwidth of the outer segment significantly. The density of pigmentation in the oil droplets presumably represents a trade-off between the need for good colour discrimination and absolute sensitivity. This might also explain why nocturnal animals, or those that underwent a nocturnal phase during their evolution, have evolved oil droplets with low pigment densities or no pigmentation or have lost their oil droplets altogether.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Australian lungfish Neoceratodus forsteri (Dipnoi) is an ancient fish that has a unique phylogenetic relationship among the basal Sarcopterygii. Here we examine the ultrastructure, histochemistry, and distribution of the retinal photoreceptors using a combination of light and electron microscopy in order to determine the characteristics of the photoreceptor layer in this living fossil. Similar proportions of rods (53%) and cones (47%) reveal that N. forsteri optimizes both scotopic and photopic sensitivity according to its visual demands. Scotopic sensitivity is optimized by a tapetum lucidum and extremely large rods (18.62 +/- 2.68 mu m ellipsoid diameter). Photopic sensitivity is optimized with a theoretical spatial resolving power of 3.28 +/- 0.66 cycles degree(-1), which is based on the spacing of at least three different cone types: a red cone containing a red oil droplet, a yellow cone containing a yellow ellipsoidal pigment, and a colorless cone containing multiple clear oil droplets. Topographic analysis reveals a heterogeneous distribution of all photoreceptor types, with peak cone densities predominantly found in temporal retina (6,020 rods MM 2, 4,670 red cones mm(-2), 900 yellow cones mm(-2), and 320 colorless cones mm(-2)), but ontogenetic changes in distribution are revealed. Spatial resolving power and the diameter of all photoreceptor types (except yellow cones) increases linearly with growth. The presence of at least three morphological types of cones provides the potential for color vision, which could play a role in the clearer waters of its freshwater environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goals of this study are to determine relationships between synaptogenesis and morphogenesis within the mushroom body calyx of the honeybee Apis mellifera and to find out how the microglomerular structure characteristic for the mature calyx is established during metamorphosis. We show that synaptogenesis in the mushroom body calycal neuropile starts in early metamorphosis (stages P1-P3), before the microglomerular structure of the neuropile is established. The initial step of synaptogenesis is characterized by the rare occurrence of distinct synaptic contacts. A massive synaptogenesis starts at stage P5, which coincides with the formation of microglomeruli, structural units of the calyx that are composed of centrally located presynaptic boutons surrounded by spiny postsynaptic endings. Microglomeruli are assembled either via accumulation of fine postsynaptic processes around preexisting presynaptic boutons or via ingrowth of thin neurites of presynaptic neurons into premicroglomeruli, tightly packed groups of spiny endings. During late pupal stages (P8-P9), addition of new synapses and microglomeruli is likely to continue. Most of the synaptic appositions formed there are made by boutons (putative extrinsic mushroom body neurons) into small postsynaptic profiles that do not exhibit presynaptic specializations (putative intrinsic mushroom body neurons). Synapses between presynaptic boutons characteristic of the adult calyx first appear at stage P8 but remain rare toward the end of metamorphosis. Our observations are consistent with the hypothesis that most of the synapses established during metamorphosis provide the structural basis for afferent information flow to calyces, whereas maturation of local synaptic circuitry is likely to occur after adult emergence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neonatal X-irradiation of central nervous system (CNS) tissue markedly reduces the glial population in the irradiated area. Previous in vivo studies have demonstrated regenerative success of adult dorsal root ganglion (DRG) neurons into the neonatally-irradiated spinal cord. The present study was undertaken to determine whether these results could be replicated in an in vitro environment. The lumbosacral spinal cord of anaesthetised Wistar rat pups, aged between 1 and 5 days, was subjected to a single dose (40 Gray) of X-irradiation. A sham-irradiated group acted as controls. Rats were allowed to reach adulthood before being killed. Their lumbosacral spinal cords were dissected out and processed for sectioning in a cryostat. Cryosections (10 mum-thick) of the spinal cord tissue were picked up on sterile glass coverslips and used as substrates for culturing dissociated adult DRG neurons. After an appropriate incubation period, cultures were fixed in 2% paraformaldehyde and immunolabelled to visualise both the spinal cord substrate using anti-glial fibrillary acidic protein (GFAP) and the growing DRG neurons using anti-growth associated protein (GAP-43). Successful growth of DRG neurites was observed on irradiated, but not on non-irradiated, sections of spinal cord. Thus, neonatal X-irradiation of spinal cord tissue appears to alter its environment such that it can later support, rather than inhibit, axonal regeneration. It is suggested that this alteration may be due, at least in part, to depletion in the number of and/or a change in the characteristics of the glial cells. (C) 2000 ISDN. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have characterized a distinctive type of bistratified amacrine cell in the rabbit retina at both the single cell and population levels. These cells correspond to the fountain amacrine cells recently identified by MacNeil and Masland (1998). The fountain cells can be distinguished in superfused retinal wholemounts labeled with nuclear dyes, thus enabling them to be targeted for intracellular injection with Neurobiotin. This revealed that the primary dendrites ascend steeply to sublamina b of the inner plexiform layer, where they form an irregular arbor at the border of strata 4 and 5. These dendrites then give rise to multiple varicose processes that descend obliquely to sublamina a, where they form a more extensive arbor in stratum 1. The fountain amacrine cells show strong homologous tracer coupling when injected with Neurobiotin, and this has enabled us to map their density distribution across the retina and to examine the dendritic relationships between neighboring cells. The fountain amacrine cells range in density from 90 to 360 cells/mm(2) and they account for 1.5% of the amacrine cells in the rabbit retina. The thick tapering dendrites in sublamina b form highly territorial arbors that tile the retina with minimal overlap, whereas the thin varicose processes intermingle in sublamina a. The fountain cells are immunopositive for gamma-aminobutyric acid and immunonegative for glycine. We further propose that these cells are homologous to the substance P-immunoreactive (SP-IR) amacrine cells in the cat retina and that they may account for a subset of the SP-IR amacrine cells in the rabbit retina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research on sensory processing or the way animals see, hear, smell, taste, feel and electrically and magnetically sense their environment has advanced a great deal over the last fifteen years. This book discusses the most important themes that have emerged from recent research and provides a summary of likely future directions. The book starts with two sections on the detection of sensory signals over long and short ranges by aquatic animals, covering the topics of navigation, communication, and finding food and other localized sources. The next section, the co-evolution of signal and sense, deals with how animals decide whether the source is prey, predator or mate by utilizing receptors that have evolved to take full advantage of the acoustical properties of the signal. Organisms living in the deep-sea environment have also received a lot of recent attention, so the next section deals with visual adaptations to limited light environments where sunlight is replaced by bioluminescence and the visual system has undergone changes to optimize light capture and sensitivity. The last section on central co-ordination of sensory systems covers how signals are processed and filtered for use by the animal. This book will be essential reading for all researchers and graduate students interested in sensory systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fishes, the most abundant and diverse group among all vertebrates, exploit the largest number of communication channels. These two volumes explore how fishes use hearing and vision, as well as the vibrational, electric and chemical modalities in their interactions with one another.