838 resultados para network congestion control
Resumo:
A fragment of mitochondrial DNA (mtDNA) control region (similar to700 bp) was sequenced in 104 individuals from 20 breeds (three Chinese domestic breeds, five recently derived breeds and 12 introduced breeds) of domestic rabbits, Oryctolagus cuniculus . Nineteen sites were polymorphic, with 18 transitions and one insertion/deletion, and eight haplotypes (A1, A2, A3, A4, A5, A6, A7 and A8) were identified. Haplotype A1 was the most common and occurred in 89 individuals. In the 25 Chinese rabbits, only haplotype A1 was observed, while four haplotypes (A1, A3, A5 and A6) were found in 26 recently derived individuals. Haplotype A2 was shared by seven individuals among three introduced strains. The other six haplotypes accounted for 0. 96-1. 92% of the animals. Combined with the published sequences of European rabbits, a reduced median-joining network was constructed. The Chinese rabbit mtDNAs were scattered into two clusters of European rabbits. These results suggest that the (so-called) Chinese rabbits were introduced from Europe. Genetic diversity in Chinese rabbits was very low.
Resumo:
This paper extends a state projection method for structure preserving model reduction to situations where only a weaker notion of system structure is available. This weaker notion of structure, identifying the causal relationship between manifest variables of the system, is especially relevant is settings such as systems biology, where a clear partition of state variables into distinct subsystems may be unknown, or not even exist. The resulting technique, like similar approaches, does not provide theoretical performance guarantees, so an extensive computational study is conducted, and it is observed to work fairly well in practice. Moreover, conditions characterizing structurally minimal realizations and sufficient conditions characterizing edge loss resulting from the reduction process, are presented. ©2009 IEEE.
Resumo:
This work presents active control of high-frequency vibration using skyhook dampers. The choice of the damper gain and its optimal location is crucial for the effective implementation of active vibration control. In vibration control, certain sensor/actuator locations are preferable for reducing structural vibration while using minimum control effort. In order to perform optimisation on a general built-up structure to control vibration, it is necessary to have a good modelling technique to predict the performance of the controller. The present work exploits the hybrid modelling approach, which combines the finite element method (FEM) and statistical energy analysis (SEA) to provide efficient response predictions at medium to high frequencies. The hybrid method is implemented here for a general network of plates, coupled via springs, to allow study of a variety of generic control design problems. By combining the hybrid method with numerical optimisation using a genetic algorithm, optimal skyhook damper gains and locations are obtained. The optimal controller gain and location found from the hybrid method are compared with results from a deterministic modelling method. Good agreement between the results is observed, whereas results from the hybrid method are found in a significantly reduced amount of time. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we consider the problem of state estimation over a communication network. Using estimation quality as a metric, two communication schemes are studied and compared. In scheme one, each sensor node communicates its measurement data to the remote estimator, while in scheme two, each sensor node communicates its local state estimate to the remote estimator. We show that with perfect communication link, if the sensor has unlimited computation capability, the two schemes produce the same estimate at the estimator, and if the sensor has limited computation capability, scheme one is always better than scheme two. On the other hand, when data packet drops occur over the communication link, we show that if the sensor has unlimited computation capability, scheme two always outperforms scheme one, and if the sensor has limited computation capability, we show that in general there exists a critical packet arrival rate, above which scheme one outperforms scheme two. Simulations are provided to demonstrate the two schemes under various circumstances. © South China University of Technology and Academy of Mathematics and Systems Science, CAS and Springer-Verlag Berlin Heidelberg 2010.
Resumo:
In this paper we consider a network that is trying to reach consensus over the occurrence of an event while communicating over Additive White Gaussian Noise (AWGN) channels. We characterize the impact of different link qualities and network connectivity on consensus performance by analyzing both the asymptotic and transient behaviors. More specifically, we derive a tight approximation for the second largest eigenvalue of the probability transition matrix. We furthermore characterize the dynamics of each individual node. © 2009 AACC.
Resumo:
Networked control systems (NCSs) have attracted much attention in the past decade due to their many advantages and growing number of applications. Different than classic control systems, resources in NCSs, such as network bandwidth and communication energy, are often limited, which degrade the closed-loop system performance and may even cause the system to become unstable. Seeking a desired trade-off between the closed-loop system performance and the limited resources is thus one heated area of research. In this paper, we analyze the trade-off between the sensor-to-controller communication rate and the closed-loop system performance indexed by the conventional LQG control cost. We present and compare several sensor data schedules, and demonstrate that two event-based sensor data schedules provide better trade-off than an optimal offline schedule. Simulation examples are provided to illustrate the theories developed in the paper. © 2012 AACC American Automatic Control Council).
Resumo:
The study of exchange markets dates back to LeonWalras's general equilibrium theory. Since then the economic market has been studied for its' equilibrium properties, fairness of allocations of private and public goods, and even the psychological incentives of participants. This paper studies the dynamics of an exchange economy built on a network of markets where consumers trade with suppliers to optimize utility. Viewing the market in as a decentralized network we study the system from the usual control theory point of view, evaluating the system's dynamic performance, stability and robustness. It is shown that certain consumer demand dynamics can lead to oscillations while others can converge to optimal allocations. © 2011 IFAC.
Resumo:
This paper presents an efficient algorithm for robust network reconstruction of Linear Time-Invariant (LTI) systems in the presence of noise, estimation errors and unmodelled nonlinearities. The method here builds on previous work [1] on robust reconstruction to provide a practical implementation with polynomial computational complexity. Following the same experimental protocol, the algorithm obtains a set of structurally-related candidate solutions spanning every level of sparsity. We prove the existence of a magnitude bound on the noise, which if satisfied, guarantees that one of these structures is the correct solution. A problem-specific model-selection procedure then selects a single solution from this set and provides a measure of confidence in that solution. Extensive simulations quantify the expected performance for different levels of noise and show that significantly more noise can be tolerated in comparison to the original method. © 2012 IEEE.
Resumo:
Linear techniques can predict whether the non-oscillating (steady) state of a thermoacoustic system is stable or unstable. With a sufficiently large impulse, however, a thermoacoustic system can reach a stable oscillating state even when the steady state is also stable. A nonlinear analysis is required to predict the existence of this oscillating state. Continuation methods are often used for this but they are computationally expensive. In this paper, an acoustic network code called LOTAN is used to obtain the steady and the oscillating solutions for a horizontal Rijke tube. The heat release is modelled as a nonlinear function of the mass flow rate. Several test cases from the literature are analysed in order to investigate the effect of various nonlinear terms in the flame model. The results agree well with the literature, showing that LOTAN can be used to map the steady and oscillating solutions as a function of the control parameters. Furthermore, the nature of the bifurcation between steady and oscillating states can be predicted directly from the nonlinear terms inside the flame model. Copyright © 2012 by ASME.
Resumo:
This paper outlines necessary and sufficient conditions for network reconstruction of linear, time-invariant systems using data from either knock-out or over-expression experiments. These structural system perturbations, which are common in biological experiments, can be formulated as unknown system inputs, allowing the network topology and dynamics to be found. We assume that only partial state measurements are available and propose an algorithm that can reconstruct the network at the level of the measured states using either time-series or steady-state data. A simulated example illustrates how the algorithm successfully reconstructs a network from data. © 2013 EUCA.
Resumo:
How do neurons develop, control, and maintain their electrical signaling properties in spite of ongoing protein turnover and perturbations to activity? From generic assumptions about the molecular biology underlying channel expression, we derive a simple model and show how it encodes an "activity set point" in single neurons. The model generates diverse self-regulating cell types and relates correlations in conductance expression observed in vivo to underlying channel expression rates. Synaptic as well as intrinsic conductances can be regulated to make a self-assembling central pattern generator network; thus, network-level homeostasis can emerge from cell-autonomous regulation rules. Finally, we demonstrate that the outcome of homeostatic regulation depends on the complement of ion channels expressed in cells: in some cases, loss of specific ion channels can be compensated; in others, the homeostatic mechanism itself causes pathological loss of function.
Resumo:
We describe a reconfigurable binary-decision-diagram logic circuit based on Shannon's expansion of Boolean logic function and its graphical representation on a semiconductor nanowire network. The circuit is reconfigured by using programmable switches that electrically connect and disconnect a small number of branches. This circuit has a compact structure with a small number of devices compared with the conventional look-up table architecture. A variable Boolean logic circuit was fabricated on an etched GaAs nanowire network having hexagonal topology with Schottky wrap gates and SiN-based programmable switches, and its correct logic operation together with dynamic reconfiguration was demonstrated.
Resumo:
This paper presents an two weighted neural network approach to determine the delay time for a heating, ventilating and air-conditioning (HVAC) plan to respond to control actions. The two weighted neural network is a fully connected four-layer network. An acceleration technique was used to improve the General Delta Rule for the learning process. Experimental data for heating and cooling modes were used with both the two weighted neural network and a traditional mathematical method to determine the delay time. The results show that two weighted neural networks can be used effectively determining the delay time for AVAC systems.
Resumo:
Processing networks are a variant of the standard linear programming network model which are especially useful for optimizing industrial energy/environment systems. Modelling advantages include an intuitive diagrammatic representation and the ability to incorporate all forms of energy and pollutants in a single integrated linear network model. Added advantages include increased speed of solution and algorithms supporting formulation. The paper explores their use in modelling the energy and pollution control systems in large industrial plants. The pollution control options in an ethylene production plant are analyzed as an example. PROFLOW, a computer tool for the formulation, analysis, and solution of processing network models, is introduced.