958 resultados para multivariate binary data
Resumo:
Research in conditioning (all the processes of preparation for competition) has used group research designs, where multiple athletes are observed at one or more points in time. However, empirical reports of large inter-individual differences in response to conditioning regimens suggest that applied conditioning research would greatly benefit from single-subject research designs. Single-subject research designs allow us to find out the extent to which a specific conditioning regimen works for a specific athlete, as opposed to the average athlete, who is the focal point of group research designs. The aim of the following review is to outline the strategies and procedures of single-subject research as they pertain to.. the assessment of conditioning for individual athletes. The four main experimental designs in single-subject research are: the AB design, reversal (withdrawal) designs and their extensions, multiple baseline designs and alternating treatment designs. Visual and statistical analyses commonly used to analyse single-subject data, and advantages and limitations are discussed. Modelling of multivariate single-subject data using techniques such as dynamic factor analysis and structural equation modelling may identify individualised models of conditioning leading to better prediction of performance. Despite problems associated with data analyses in single-subject research (e.g. serial dependency), sports scientists should use single-subject research designs in applied conditioning research to understand how well an intervention (e.g. a training method) works and to predict performance for a particular athlete.
Resumo:
Biological wastewater treatment is a complex, multivariate process, in which a number of physical and biological processes occur simultaneously. In this study, principal component analysis (PCA) and parallel factor analysis (PARAFAC) were used to profile and characterise Lagoon 115E, a multistage biological lagoon treatment system at Melbourne Water's Western Treatment Plant (WTP) in Melbourne, Australia. In this study, the objective was to increase our understanding of the multivariate processes taking place in the lagoon. The data used in the study span a 7-year period during which samples were collected as often as weekly from the ponds of Lagoon 115E and subjected to analysis. The resulting database, involving 19 chemical and physical variables, was studied using the multivariate data analysis methods PCA and PARAFAC. With these methods, alterations in the state of the wastewater due to intrinsic and extrinsic factors could be discerned. The methods were effective in illustrating and visually representing the complex purification stages and cyclic changes occurring along the lagoon system. The two methods proved complementary, with each having its own beneficial features. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The use of a fully parametric Bayesian method for analysing single patient trials based on the notion of treatment 'preference' is described. This Bayesian hierarchical modelling approach allows for full parameter uncertainty, use of prior information and the modelling of individual and patient sub-group structures. It provides updated probabilistic results for individual patients, and groups of patients with the same medical condition, as they are sequentially enrolled into individualized trials using the same medication alternatives. Two clinically interpretable criteria for determining a patient's response are detailed and illustrated using data from a previously published paper under two different prior information scenarios. Copyright (C) 2005 John Wiley & Sons, Ltd.
Resumo:
With mixed feature data, problems are induced in modeling the gating network of normalized Gaussian (NG) networks as the assumption of multivariate Gaussian becomes invalid. In this paper, we propose an independence model to handle mixed feature data within the framework of NG networks. The method is illustrated using a real example of breast cancer data.
Resumo:
This study examined the genetic and environmental relationships among 5 academic achievement skills of a standardized test of academic achievement, the Queensland Core Skills Test (QCST; Queensland Studies Authority, 2003a). QCST participants included 182 monozygotic pairs and 208 dizygotic pairs (mean 17 years +/- 0.4 standard deviation). IQ data were included in the analysis to correct for ascertainment bias. A genetic general factor explained virtually all genetic variance in the component academic skills scores, and accounted for 32% to 73% of their phenotypic variances. It also explained 56% and 42% of variation in Verbal IQ and Performance IQ respectively, suggesting that this factor is genetic g. Modest specific genetic effects were evident for achievement in mathematical problem solving and written expression. A single common factor adequately explained common environmental effects, which were also modest, and possibly due to assortative mating. The results suggest that general academic ability, derived from genetic influences and to a lesser extent common environmental influences, is the primary source of variation in component skills of the QCST.
Resumo:
Objectives: Determine psychosocial variables associated with the new diagnosis of diabetes in elderly women. Examine whether variables remained significant predictors after controlling for non-psychosocial risk factors and the frequency of doctor visits. Research design and methods: A longitudinal cohort study was conducted using data from 10 300 women who completed a survey in 1996 and 1999. The women were aged between 70 and 74 years of age in 1996. The were asked to provide self-reports on a number of psychosocial and non-psychosocial variables in 1996 and on whether they had been diagnosed for the first time with diabetes in the 3-year period. The relationships between the potential risk factors and new diagnosis of diabetes were examined using binary logistic regression analysis. Results: Univariate results showed that not having a current partner, having low social support and having a mental health index score in the clinical range were all associated with higher risks of being diagnosed with diabetes for the first time. However the multivariate results showed that only a mental health index score in the clinical range and not having a current partner provided unique prediction of being newly diagnosed with diabetes. Of the non-psychosocial variables measured, only having a high BMI and hypertension were associated with increased risks of new diagnosis, while there was also evidence of a U shaped relationship between alcohol consumption and new diagnosis. Even after adjusting for frequency of doctor visits and non-psychosocial risk factors, a mental health index in the clinical range proved to still be a significant risk factor. Conclusions: A score on the mental health index that is within the clinical range is an independent risk factor for the new diagnosis of diabetes in elderly women. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The Australian Pregnancy Registry, affiliated European Register of Antiepileptic drugs in Pregnancy (EURAP), recruits informed consenting women with epilepsy on treatment with antiepileptic drugs (AEDs), those untreated, and women on AEDs for other indications. Enrolment is considered prospective if it has occurred before presence or absence of major foetal malformations (FMs) are known, or retrospective, if they had occurred after the birth of infant or detection of major FM. Telephone Interviews are conducted to ascertain pregnancy outcome and collect data about seizures. To date 630 women have been enrolled, with 565 known pregnancy outcomes. Valproate (VPA) above 1100 mg/day was associated with a significantly higher incidence of FMs than other AEDs (P < 0.05). This was independent of other AED use or potentially confounding factors on multivariate analysis (OR = 7.3, P < 0.0001). Lamotrigine (LTG) monotherapy (n = 65), has so far been free of malformations. Although seizure control was not a primary outcome, we noted that more patients on LTG than on VPA required dose adjustments to control seizures. Data indicate an increased risk of FM in women taking VPA in doses > 1100 mg/day compared with other AEDs. The choice of AED for pregnant women with epilepsy requires assessment of balance of risks between teratogenicity and seizure control.
Resumo:
Computer modelling promises to. be an important tool for analysing and predicting interactions between trees within mixed species forest plantations. This study explored the use of an individual-based mechanistic model as a predictive tool for designing mixed species plantations of Australian tropical trees. The 'spatially explicit individually based-forest simulator' (SeXI-FS) modelling system was used to describe the spatial interaction of individual tree crowns within a binary mixed-species experiment. The three-dimensional model was developed and verified with field data from three forest tree species grown in tropical Australia. The model predicted the interactions within monocultures and binary mixtures of Flindersia brayleyana, Eucalyptus pellita and Elaeocarpus grandis, accounting for an average of 42% of the growth variation exhibited by species in different treatments. The model requires only structural dimensions and shade tolerance as species parameters. By modelling interactions in existing tree mixtures, the model predicted both increases and reductions in the growth of mixtures (up to +/- 50% of stem volume at 7 years) compared to monocultures. This modelling approach may be useful for designing mixed tree plantations. (c) 2006 Published by Elsevier B.V.
Resumo:
The main purpose of this article is to gain an insight into the relationships between variables describing the environmental conditions of the Far Northern section of the Great Barrier Reef, Australia, Several of the variables describing these conditions had different measurement levels and often they had non-linear relationships. Using non-linear principal component analysis, it was possible to acquire an insight into these relationships. Furthermore. three geographical areas with unique environmental characteristics could be identified. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
Background: The purpose of the study is to identify factors predictive of outcome after open globe injury in 273 patients admitted to the Royal Brisbane Hospital, Queensland, Australia between 1992 and 2003. Methods: Data were collected retrospectively regarding demographic and geographical factors, injury circumstances, initial visual acuity (VA), injury parameters, details of initial and subsequent surgery, final best corrected VA and complications. Multivariate analysis using binary logistic regression was utilized to identify which factors were related to outcome. Results: 83% of patients were male, with a mean age of 38.3 years. The mean duration of follow up was 16.6 months and 58% of patients (135 of 231) achieved an overall improvement in their vision. Forty-one cases (15%) were enucleated, with half of these cases performed primarily. The prognostic factors indicating the likelihood of a VA of counting fingers or worse were poor initial VA, a large laceration > 10 mm and the presence of a relative afferent pupil defect. Rural patients had a significantly worse final VA than city dwellers and had higher rates of endophthalmitis and enucleation. Conclusions: Assessment of prognostic factors at the time of presentation of an open globe injury enables realistic expectations of final visual outcome by the doctor and the patient. In order to improve outcomes in patients from rural areas, access to specialized eye services need to be upgraded.
Resumo:
Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Hannenhalli and Pevzner developed the first polynomial-time algorithm for the combinatorial problem of sorting of signed genomic data. Their algorithm solves the minimum number of reversals required for rearranging a genome to another when gene duplication is nonexisting. In this paper, we show how to extend the Hannenhalli-Pevzner approach to genomes with multigene families. We propose a new heuristic algorithm to compute the reversal distance between two genomes with multigene families via the concept of binary integer programming without removing gene duplicates. The experimental results on simulated and real biological data demonstrate that the proposed algorithm is able to find the reversal distance accurately. ©2005 IEEE
Resumo:
In this paper we present an efficient k-Means clustering algorithm for two dimensional data. The proposed algorithm re-organizes dataset into a form of nested binary tree*. Data items are compared at each node with only two nearest means with respect to each dimension and assigned to the one that has the closer mean. The main intuition of our research is as follows: We build the nested binary tree. Then we scan the data in raster order by in-order traversal of the tree. Lastly we compare data item at each node to the only two nearest means to assign the value to the intendant cluster. In this way we are able to save the computational cost significantly by reducing the number of comparisons with means and also by the least use to Euclidian distance formula. Our results showed that our method can perform clustering operation much faster than the classical ones. © Springer-Verlag Berlin Heidelberg 2005
Resumo:
Most traditional methods for extracting the relationships between two time series are based on cross-correlation. In a non-linear non-stationary environment, these techniques are not sufficient. We show in this paper how to use hidden Markov models (HMMs) to identify the lag (or delay) between different variables for such data. We first present a method using maximum likelihood estimation and propose a simple algorithm which is capable of identifying associations between variables. We also adopt an information-theoretic approach and develop a novel procedure for training HMMs to maximise the mutual information between delayed time series. Both methods are successfully applied to real data. We model the oil drilling process with HMMs and estimate a crucial parameter, namely the lag for return.