911 resultados para moving particle tracking
Resumo:
Neuronal oscillations are an important aspect of EEG recordings. These oscillations are supposed to be involved in several cognitive mechanisms. For instance, oscillatory activity is considered a key component for the top-down control of perception. However, measuring this activity and its influence requires precise extraction of frequency components. This processing is not straightforward. Particularly, difficulties with extracting oscillations arise due to their time-varying characteristics. Moreover, when phase information is needed, it is of the utmost importance to extract narrow-band signals. This paper presents a novel method using adaptive filters for tracking and extracting these time-varying oscillations. This scheme is designed to maximize the oscillatory behavior at the output of the adaptive filter. It is then capable of tracking an oscillation and describing its temporal evolution even during low amplitude time segments. Moreover, this method can be extended in order to track several oscillations simultaneously and to use multiple signals. These two extensions are particularly relevant in the framework of EEG data processing, where oscillations are active at the same time in different frequency bands and signals are recorded with multiple sensors. The presented tracking scheme is first tested with synthetic signals in order to highlight its capabilities. Then it is applied to data recorded during a visual shape discrimination experiment for assessing its usefulness during EEG processing and in detecting functionally relevant changes. This method is an interesting additional processing step for providing alternative information compared to classical time-frequency analyses and for improving the detection and analysis of cross-frequency couplings.
Resumo:
The scalar sector of the effective low-energy six-dimensional Kaluza-Klein theory is seen to represent an anisotropic fluid composed of two perfect fluids if the extra space metric has a Euclidean signature, or a perfect fluid of geometric strings if it has an indefinite signature. The Einstein field equations with such fluids can be explicitly integrated when the four-dimensional space-time has two commuting Killing vectors.
Resumo:
Particle production in a cosmological spacetime with extra dimensions is discussed. A five-dimensional cosmological model with a three-dimensional space expanding isotropically like in a radiative Friedmann-Robertson-Walker model and an internal space contracting to a constant small size is considered. The parameters of the model are adjusted so that time variations in internal space are compatible with present limits on time variations of the fundamental constants. By requiring that the energy density of the particles produced be less than the critical density at the radiation era we set restrictions on two more parameters: namely, the initial time of application of the semiclassical approach and the relative sizes between the internal space and the horizon of the ordinary Universe at this time. Whereas the production of massless particles allows a large range of variation to these parameters, the production of massive particles sets severe constraints on them, since, if they are overproduced, their energy density might very soon dominate the Universe and make cosmological dimensional reduction by extradimensional contraction unlikely.
Resumo:
We use wave packet mode quantization to compute the creation of massless scalar quantum particles in a colliding plane wave spacetime. The background spacetime represents the collision of two gravitational shock waves followed by trailing gravitational radiation which focus into a Killing-Cauchy horizon. The use of wave packet modes simplifies the problem of mode propagation through the different spacetime regions which was previously studied with the use of monochromatic modes. It is found that the number of particles created in a given wave packet mode has a thermal spectrum with a temperature which is inversely proportional to the focusing time of the plane waves and which depends on the mode trajectory.
Resumo:
Graph produced by Office of Drug Control Policy showing the tracking of Meth Labs in Iowa from 2008-2010.
Resumo:
Pseudoephedrine (PSE) is a common medicine used to treat colds and allergies. It is also a common ingredient, or precursor, used to manufacture methamphetamine, an illegal Schedule II drug under Iowa law. Prior to 2005, pseudoephedrine could be purchased over-the-counter, in any amount. Since PSE is the one ingredient needed in all methods of meth manufacturing, it was readily available to meth cooks.
Resumo:
A recent paper by J. Heinrichs [Phys. Rev. E 48, 2397 (1993)] presents analytic expressions for the first-passage times and the survival probability for a particle moving in a field of random correlated forces. We believe that the analysis there is flawed due to an improper use of boundary conditions. We compare that result, in the white noise limit, with the known exact expression of the mean exit time.
Exact solution to the exit-time problem for an undamped free particle driven by Gaussian white noise
Resumo:
In a recent paper [Phys. Rev. Lett. 75, 189 (1995)] we have presented the exact analytical expression for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise out of a region (0,L) in space. In this paper we give a detailed account of the method employed and present results on asymptotic properties and averages of T(x,v).
Resumo:
The results of a recently conducted evaluation show that a gender-responsive program for women probationers holds promise in significantly reducing recidivism rates. The University of Cincinnati conducted the evaluation of the cognitive-behavioral program, Moving On, in which it compared recidivism outcomes for moderate to high-risk Iowa offenders completing the program with a similar group of offenders not having attended any cognitive program.
Resumo:
Atribution as a function of the time are analyzed and this study leads to a deeper knowledge of the microscopic processes involved in the magnetic relaxation
Resumo:
We study the effects of the magnetic field on the relaxation of the magnetization of smallmonodomain noninteracting particles with random orientations and distribution of anisotropyconstants. Starting from a master equation, we build up an expression for the time dependence of themagnetization which takes into account thermal activation only over barriers separating energyminima, which, in our model, can be computed exactly from analytical expressions. Numericalcalculations of the relaxation curves for different distribution widths, and under different magneticfields H and temperatures T, have been performed. We show how a T ln(t/t0) scaling of the curves,at different T and for a given H, can be carried out after proper normalization of the data to theequilibrium magnetization. The resulting master curves are shown to be closely related to what wecall effective energy barrier distributions, which, in our model, can be computed exactly fromanalytical expressions. The concept of effective distribution serves us as a basis for finding a scalingvariable to scale relaxation curves at different H and a given T, thus showing that the fielddependence of energy barriers can be also extracted from relaxation measurements.
Resumo:
The use of pig slurry (PS) as fertilizer can affect the soil quality and increase total stocks of soil organic carbon (TOC). However, the effects of PS on TOC amount and forms in the soil are not fully understood, particularly in areas under no-tillage (NT). The purpose of this study was to determine TOC contents and stocks in the particulate (POC) and mineral-associated C fractions (MAC) of an Oxisol after nine years of maize-oat rotation under NT, with annual applications of PS, soluble fertilizer and combined fertilization (pig slurry + soluble fertilizer). The experiment was initiated in 2001 in Campos Novos, Santa Catarina, with the following treatments: PS at rates of 0 (without fertilization - PS0); 25 (PS25); 50 (PS50); 100 (PS100); and 200 m3 ha-1yr-1 (PS200); fertilization with soluble fertilizer (SF); and mixed fertilization (PS + SF). The TOC content was determined in samples of six soil layers to a depth of 40 cm, and the POC and MAC contents in four layers to a depth of 20 cm. From the rate of 50 m3 ha-1yr-1 and upwards, the soil TOC content and stock increased according to the PS rates in the layers to a depth of 10 cm. The POC and MAC contents and stocks were higher in the surface layers, with a clear predominance of the second fraction, but a greater relative amplitude in the contents of the first fraction.