860 resultados para mitochondrial alterations
Resumo:
Arenaviruses are important emerging human pathogens maintained by noncytolytic persistent infection in their rodent reservoir hosts. Despite high levels of viral replication, persistently infected carrier hosts show only mildly elevated levels of type I interferon (IFN-I). Accordingly, the arenavirus nucleoprotein (NP) has been identified as a potent IFN-I antagonist capable of blocking activation of interferon regulatory factor 3 (IRF3) via the retinoic acid inducible gene (RIG)-I/mitochondrial antiviral signaling (MAVS) pathway. Another important mechanism of host innate antiviral defense is represented by virus-induced mitochondrial apoptosis via RIG-I/MAVS and IRF3. In the present study, we investigated the ability of the prototypic Old World arenavirus lymphocytic choriomeningitis virus (LCMV) to interfere with RIG-I/MAVS-dependent apoptosis. We found that LCMV does not induce apoptosis at any time during infection. While LCMV efficiently blocked induction of IFN-I via RIG-I/MAVS in response to superinfection with cytopathic RNA viruses, virus-induced mitochondrial apoptosis remained fully active in LCMV-infected cells. Notably, in LCMV-infected cells, RIG-I was dispensable for virus-induced apoptosis via MAVS. Our study reveals that LCMV infection efficiently suppresses induction of IFN-I but does not interfere with the cell's ability to undergo virus-induced mitochondrial apoptosis as a strategy of innate antiviral defense. The RIG-I independence of mitochondrial apoptosis in LCMV-infected cells provides the first evidence that arenaviruses can reshape apoptotic signaling according to their needs. IMPORTANCE: Arenaviruses are important emerging human pathogens that are maintained in their rodent hosts by persistent infection. Persistent virus is able to subvert the cellular interferon response, a powerful branch of the innate antiviral defense. Here, we investigated the ability of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) to interfere with the induction of programmed cell death, or apoptosis, in response to superinfection with cytopathic RNA viruses. Upon viral challenge, persistent LCMV efficiently blocked induction of interferons, whereas virus-induced apoptosis remained fully active in LCMV-infected cells. Our studies reveal that the persistent virus is able to reshape innate apoptotic signaling in order to prevent interferon production while maintaining programmed cell death as a strategy for innate defense. The differential effect of persistent virus on the interferon response versus its effect on apoptosis appears as a subtle strategy to guarantee sufficiently high viral loads for efficient transmission while maintaining apoptosis as a mechanism of defense.
Resumo:
Chronic aerobic exercise has been shown to increase exercise efficiency, thus allowing less energy expenditure for a similar amount of work. The extent to which skeletal muscle mitochondria play a role in this is not fully understood, particularly in an elderly population. The purpose of this study was to determine the relationship of exercise efficiency with mitochondrial content and function. We hypothesized that the greater the mitochondrial content and/or function, the greater would be the efficiencies. Thirty-eight sedentary (S, n = 23, 10F/13M) or athletic (A, n = 15, 6F/9M) older adults (66.8 ± 0.8 years) participated in this cross sectional study. V˙O2peak was measured with a cycle ergometer graded exercise protocol (GXT). Gross efficiency (GE, %) and net efficiency (NE, %) were estimated during a 1-h submaximal test (55% V˙O2peak). Delta efficiency (DE, %) was calculated from the GXT. Mitochondrial function was measured as ATPmax (mmol/L/s) during a PCr recovery protocol with (31)P-MR spectroscopy. Muscle biopsies were acquired for determination of mitochondrial volume density (MitoVd, %). Efficiencies were 17% (GE), 14% (NE), and 16% (DE) higher in A than S. MitoVD was 29% higher in A and ATPmax was 24% higher in A than in S. All efficiencies positively correlated with both ATPmax and MitoVd. Chronically trained older individuals had greater mitochondrial content and function, as well as greater exercise efficiencies. GE, NE, and DE were related to both mitochondrial content and function. This suggests a possible role of mitochondria in improving exercise efficiency in elderly athletic populations and allowing conservation of energy at moderate workloads.
Resumo:
Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.
Resumo:
Cerebral, ocular, dental, auricular, skeletal anomalies (CODAS) syndrome (MIM 600373) was first described and named by Shehib et al, in 1991 in a single patient. The anomalies referred to in the acronym are as follows: cerebral-developmental delay, ocular-cataracts, dental-aberrant cusp morphology and delayed eruption, auricular-malformations of the external ear, and skeletal-spondyloepiphyseal dysplasia. This distinctive constellation of anatomical findings should allow easy recognition but despite this only four apparently sporadic patients have been reported in the last 20 years indicating that the full phenotype is indeed very rare with perhaps milder or a typical presentations that are allelic but without sufficient phenotypic resemblance to permit clinical diagnosis. We performed exome sequencing in three patients (an isolated case and a brother and sister sib pair) with classical features of CODAS. Sanger sequencing was used to confirm results as well as for mutation discovery in a further four unrelated patients ascertained via their skeletal features. Compound heterozygous or homozygous mutations in LONP1 were found in all (8 separate mutations; 6 missense, 1 nonsense, 1 small in-frame deletion) thus establishing the genetic basis of CODAS and the pattern of inheritance (autosomal recessive). LONP1 encodes an enzyme of bacterial ancestry that participates in protein turnover within the mitochondrial matrix. The mutations cluster at the ATP-binding and proteolytic domains of the enzyme. Biallelic inheritance and clustering of mutations confirm dysfunction of LONP1 activity as the molecular basis of CODAS but the pathogenesis remains to be explored.
Resumo:
Alanine aminotransferase (ALT) plays an important role in amino acid metabolism and gluconeogenesis. The preference of carnivorous fish for protein amino acids instead of carbohydrates as a source of energy lead us to study the transcriptional regulation of the mitochondrial ALT (mALT) gene and to characterize the enzyme kinetics and modulation of mALT expression in the kidney of gilthead sea bream (Sparus aurata) under different nutritional and hormonal conditions. 5′-Deletion analysis of mALT promoter in transiently transfected HEK293 cells, site-directed mutagenesis and electrophoretic mobility shift assays allowed us to identify HNF4α as a new factor involved in the transcriptional regulation of mALT expression. Quantitative RT-PCR assays showed that starvation and the administration of streptozotocin (STZ) decreased HNF4α levels in the kidney of S. aurata, leading to the downregulation of mALT transcription. Analysis of the tissue distribution showed that kidney, liver, and intestine were the tissues with higher mALT and HNF4α expression. Kinetic analysis indicates that mALT enzyme is more efficient in catalyzing the conversion of L-alanine to pyruvate than the reverse reaction. From these results, we conclude that HNF4α transactivates the mALT promoter and that the low levels of mALT expression found in the kidney of starved and STZ-treated fish result from a decreased expression of HNF4α. Our findings suggest that the mALT isoenzyme plays a major role in oxidazing dietary amino acids, and points to ALT as a target for a biotechnological action to spare protein and optimize the use of dietary nutrients for fish culture.
Resumo:
Mitochondrial DNA (mtDNA), a maternally inherited 16.6-Kb molecule crucial for energy production, is implicated in numerous human traits and disorders. It has been hypothesized that the presence of mutations in the mtDNA may contribute to the complex genetic basis of schizophreniadisease, due to the evidence of maternal inheritance and the presence of schizophrenia symptoms in patients affected of a mitochondrial disorder related to a mtDNA mutation. The present project aims to study the association of variants of mitochondrial DNA (mtDNA), and an increased risk of schizophrenia in a cohort of patients and controls from the same population. The entire mtDNA of 55 schizophrenia patients with an apparent maternal transmission of the disease and 38 controls was sequenced by Next Generation Sequencing (Ion Torrent PGM, Life Technologies) and compared to the reference sequence. The current method for establishing mtDNA haplotypes is Sanger sequencing, which is laborious, timeconsuming, and expensive. With the emergence of Next Generation Sequencing technologies, this sequencing process can be much more quickly and cost-efficiently. We have identified 14 variants that have not been previously reported. Two of them were missense variants: MTATP6 p.V113M and MTND5 p.F334L ,and also three variants encoding rRNA and one variant encoding tRNA. Not significant differences have been found in the number of variants between the two groups. We found that the sequence alignment algorithm employed to align NGS reads played a significant role in the analysis of the data and the resulting mtDNA haplotypes. Further development of the bioinformatics analysis and annotation step would be desirable to facilitate the application of NGS in mtDNA analysis.
Resumo:
Background Exhausting exercise reduces the mitochondrial DNA (mtDNA) content in the skeletal muscle of healthy subjects due to oxidative damage. Since patients with chronic obstructive pulmonary disease (COPD) suffer enhanced oxidative stress during exercise, it was hypothesised that the mtDNA content will be further reduced. Objective To investigate the effects of exercise above and below the lactate threshold (LT) on the mtDNA content of skeletal muscle of patients with COPD. Methods Eleven patients with COPD (676 8 years; forced expiratory volume in 1s (FEV1)456 8%ref) and 10 healthy controls (666 4 years; FEV1 906 7% ref) cycled 45 min above LT (65% peak oxygen uptake (V9O2 peak)and another 7 patients (656 6 years; FEV1 506 4%ref)and 7 controls (566 9 years;FEV1 926 6%ref) cycled 45 min below their LT (50% V9O2 peak). Biopsies from the vastus lateralis muscle were obtained before exercise, immediately after and 1 h, 1 day and 1 week later to determine by PCR the mtDNA/nuclear DNA (nDNA) ratio (a marker of mtDNA content) and the expression of the peroxisome proliferator-activated receptor- g coactivator-1 a (PGC-1a)mRNA and the amount of reactive oxygen species produced during exercise was estimated from total V9O2. Results Skeletal muscle mtDNA/nDNA fell significantly after exercise above the LT both in controls and in patients with COPD, but the changes were greater in those with COPD. These changes correlated with production of reactive oxygen species, increases in manganese superoxide dismutase and PGC-1 a mRNA and returned to baseline values 1 week later. This pattern of response wa was also observed, albeit minimised, in patients exercising below the LT. Conclusions In patients with COPD, exercise enhances the decrease in mtDNA content of skeletal muscle and the expression of PGC-1 a mRNA seen in healthy subjects probably due to oxidative stress.
Resumo:
One of the most important reference groups for Mycenaean pottery is the Mycenae/Berbati (MB). In several studies, a second group has been identified (MBKR). The chemical compositions were similar to MB, but with important differences in the Na, K and Rb contents. The present study suggests that these differences are due to selective alteration and contamination processes that are indirectly determined by the original firing temperature. Therefore, groups MB and MBKR should be considered as a single reference group.
Resumo:
Previous studies have demonstrated that clinical pulpal pain can induce the expression of pro-inflammatory neuropeptides in the adjacent gingival crevice fluid (GCF). Vasoactive agents such as substance P (SP) are known to contribute to the inflammatory type of pain and are associated with increased blood flow. More recent animal studies have shown that application of capsaicin on alveolar mucosa provokes pain and neurogenic vasodilatation in the adjacent gingiva. Pain-associated inflammatory reactions may initiate expression of several pro- and anti-inflammatory mediators. Collagenase-2 (MMP-8) has been considered to be the major destructive protease, especially in the periodontitis-affected gingival crevice fluid (GCF). MMP-8 originates mostly from neutrophil leukocytes, the first line of defence cells that exist abundantly in GCF, especially in inflammation. With this background, we wished to clarify the spatial extensions and differences between tooth-pain stimulation and capsaicin-induced neurogenic vasodilatation in human gingiva. Experiments were carried out to study whether tooth stimulation and capsaicin stimulation of alveolar mucosa would induce changes in GCF MMP-8 levels and whether tooth stimulation would release neuropeptide SP in GCF. The experiments were carried out on healthy human volunteers. During the experiments, moderate and high intensity painful tooth stimulation was performed by a constant current tooth stimulator. Moderate tooth stimulation activates A-delta fibres, while high stimulation also activates C-fibres. Painful stimulation of the gingiva was achieved by topical application of capsaicin-moistened filter paper on the mucosal surface. Capsaicin is known to activate selectively nociceptive C-fibres of stimulated tissue. Pain-evoked vasoactive changes in gingivomucosal tissues were mapped by laser Doppler imaging (LDI), which is a sophisticated and non-invasive method for studying e.g. spatial and temporal characteristics of pain- and inflammation-evoked blood flow changes in gingivomucosal tissues. Pain-evoked release of MMP-8 in GCF samples was studied by immunofluorometric assay (IFMA) and Western immunoblotting. The SP levels in GCF were analysed by Enzyme immunoassay (EIA). During the experiments, subjective stimulus-evoked pain responses were determined by a visual analogue pain scale. Unilateral stimulation of alveolar mucosa and attached gingiva by capsaicin evoked a distinct neurogenic vasodilatation in the ipsilateral gingiva, which attenuated rapidly at the midline. Capsaicin stimulation of alveolar mucosa provoked clear inflammatory reactions. In contrast to capsaicin stimuli, tooth stimulation produced symmetrical vasodilatations bilaterally in the gingiva. The ipsilateral responses were significantly smaller during tooth stimulation than during capsaicin stimuli. The current finding – that tooth stimulation evokes bilateral vasodilatation while capsaicin stimulation of the gingiva mainly produces unilateral vasodilatation – emphasises the usefulness of LDI in clarifying spatial features of neurogenic vasoactive changes in the intra-oral tissues. Capsaicin stimulation of the alveolar mucosa induced significant elevations in MMP-8 levels and activation in GCF of the adjacent teeth. During the experiments, no marked changes occurred in MMP-8 levels in the GCF of distantly located teeth. Painful stimulation of the upper incisor provoked elevations in GCF MMP-8 and SP levels of the stimulated tooth. The GCF MMP-8 and SP levels of the non-stimulated teeth were not changed. These results suggest that capsaicin-induced inflammatory reactions in gingivomucosal tissues do not cross the midline in the anterior maxilla. The enhanced reaction found during stimulation of alveolar mucosa indicates that alveolar mucosa is more sensitive to chemical irritants than the attached gingiva. Analysis of these data suggests that capsaicin-evoked neurogenic inflammation in the gingiva can trigger the expression and activation of MMP-8 in GCF of the adjacent teeth. In this study, it is concluded that experimental tooth pain at C-fibre intensity can induce local elevations in MMP-8 and SP levels in GCF. Depending on the role of MMP-8 in inflammation, in addition to surrogated tissue destruction, the elevated MMP-8 in GCF may also reflect accelerated local defensive and anti-inflammatory reactions.
Resumo:
BACKGROUND: Cerebellar pathology occurs in late multiple sclerosis (MS) but little is known about cerebellar changes during early disease stages. In this study, we propose a new multicontrast "connectometry" approach to assess the structural and functional integrity of cerebellar networks and connectivity in early MS. METHODS: We used diffusion spectrum and resting-state functional MRI (rs-fMRI) to establish the structural and functional cerebellar connectomes in 28 early relapsing-remitting MS patients and 16 healthy controls (HC). We performed multicontrast "connectometry" by quantifying multiple MRI parameters along the structural tracts (generalized fractional anisotropy-GFA, T1/T2 relaxation times and magnetization transfer ratio) and functional connectivity measures. Subsequently, we assessed multivariate differences in local connections and network properties between MS and HC subjects; finally, we correlated detected alterations with lesion load, disease duration, and clinical scores. RESULTS: In MS patients, a subset of structural connections showed quantitative MRI changes suggesting loss of axonal microstructure and integrity (increased T1 and decreased GFA, P < 0.05). These alterations highly correlated with motor, memory and attention in patients, but were independent of cerebellar lesion load and disease duration. Neither network organization nor rs-fMRI abnormalities were observed at this early stage. CONCLUSION: Multicontrast cerebellar connectometry revealed subtle cerebellar alterations in MS patients, which were independent of conventional disease markers and highly correlated with patient function. Future work should assess the prognostic value of the observed damage. Hum Brain Mapp 36:1609-1619, 2015. © 2014 Wiley Periodicals, Inc.
Resumo:
Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i) higher expression of muscle deiodinase type 3 (DIO3), which inactivates tri-iodothyronine (T3), and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2), (ii) slower net formation of T3 from its T4 precursor in muscles, and (iii) accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development. We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. These energy-sparing effects persist during weight recovery and contribute to catch-up fat.
Resumo:
Recent mineralogical studies on archaeological pottery samples report significant variations in alkali metal concentrations due to environmental alterations during burial. Here we examine the effects of potassium (K) leaching on luminescence dating. The effect on the estimation of the dose rate is studied by considering four models of leaching (exponential, linear, early and late) and their impact on fine- and coarse-grain dating are calculated. The modeling approaches are applied to two cases of pottery in which evidence for alteration was found. Additionally, TL dating performed on pottery of one of the studied cases, indicates the importance of leaching effects on absolute dating measurements.
Resumo:
Regular aerobic exercise training, which is touted as a way to ameliorate metabolic diseases, increases aerobic capacity. Aerobic capacity usually declines with advanced age. The decline in aerobic capacity is typically associated by a decrease in the quality of skeletal muscle. At the molecular level, this decreased quality comes in part from perturbations in skeletal muscle mitochondria. Of particular is a decrease in the total amount of mitochondria that occupy the skeletal muscle volume. What is not well established is if this decrease in mitochondrial content is due to inactive lifestyle or the process of aging. Herein, the work of the thesis shows a clear connection between mitochondrial content and aerobic capacity. This indicates that active individuals with higher VChmax levels also contain higher volumes of mitochondria inside their muscle as opposed to sedentary counterparts who have lower levels of mitochondrial content. Upon taking these previously sedentary individuals and entering them into an aerobic exercise intervention, they are able to recover their mitochondrial content as well as function to similar levels of lifelong athletes of the same age. Furthermore, the results of this thesis show that mitochondrial content and function also correlate with exercise efficiency. If one is more efficient, he/she is able to expend less energy for a similar power output. Furthermore, individuals who increase in efficiency also increase in the ability to oxidize and utilize fat during pro-longed exercise. This increased reliance on fat after the intervention is associated with an increased amount of mitochondria, particularly in the intermyofibrillar region of skeletal muscle. Therefore, elderly adults who were once sedentary were able to recover mitochondrial content and function and are able to reap other health benefits from regular aerobic exercise training. Aging per se does not seem to be the culprit that will lead to metabolic diseases but rather it seems to be a lack of physical activity. -- Un entraînement sportif d'endurance, connu pour réduire le risque de développer des maladies métaboliques, augmente notre capacité aérobie. La capacité aérobie diminue généralement avec l'âge. Ce déclin est typiquement associé d'une diminution de la qualité du muscle squelettique. Au niveau moléculaire, cette diminution est due à des perturbations dans les mitochondries du muscle squelettique,, ce qui conduit à une diminution de la quantité totale des mitochondries présentes dans le muscle squelettique. Il n'a pas encore été établi si cette diminution de la teneur mitochondriale est due à un mode de vie sédentaire ou au processus du vieillissement. Ce travail de thèse montre un lien clair entre le contenu mitochondrial et la capacité aérobie. Il indique que des personnes âgées actives, avec des niveaux de V02max plus élevés, possèdent également un volume plus élevé de mitochondries dans leurs muscles en comparaison à leurs homologues sédentaires. En prenant des individus sédentaires et leur faisant pratiquer une activité physique aérobie, il est possible d'accroître leur contenu de même que leur fonction mitochondriale à des niveaux similaires à ceux d'athlètes du même âge ayant pratiqué une activité physique tout au long de leur vie. De plus, les résultats de ce travail démontrent que le contenu et la fonction mitochondriale sont en corrélation avec l'efficiscience lors d'exercice physique. En agumentant l'effiscience, les personnes sont alors capables de dépenser moins d'énergie pour une puissance d'exercice similaire. Donc, un volume mitochondrial accru dans le muscle squelettique, associé à une fonction mitochondriale améliorée, est associté à une augmentation de l'effiscience. En outre, les personnes qui augmentent leur effiscience, augmentent aussi leur capacité à oxyder les graisses durant l'exercice prolongé. Une augmentation du recours au graisses après l'intervention est associée à une quantité accrue de mitochondries, en particulier dans la région inter-myofibrillaire du muscle squelettique. Par conséquent, les personnes âgées autrefois sédentaires sont en mesure de récupérer leur contenu et leur fonction mitochondriale ainsi que d'autres avantages pour la santé grâce à un entraînement aérobie régulier. Le vieillissement en soi ne semble donc pas être le coupable conduisant aux maladies métaboliques qui semblent plutôt être lié à un manque d'activité physique.
Resumo:
BACKGROUND: Several subsets of non-small-cell lung cancer (NSCLC) are defined by molecular alterations acting as tumor drivers, some of them being currently therapeutically actionable. The rat sarcoma (RAS)-rapidly accelerated fibrosarcoma (RAF)-mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) pathway constitutes an attractive potential target, as v-Raf murine sarcoma viral oncogene homolog B (BRAF) mutations occur in 2-4% of NSCLC adenocarcinoma. METHODS: Here, we review the latest clinical data on BRAF serine/threonine kinase inhibitors in NSCLC. RESULTS: Treatment of V600E BRAF-mutated NSCLC with BRAF inhibitor monotherapy demonstrated encouraging antitumor activity. Combination of BRAF and MEK inhibitors using dabrafenib and trametinib is under evaluation. Preliminary data suggest superior efficacy compared with BRAF inhibitor monotherapy. CONCLUSION: Targeting BRAF alterations represents a promising new therapeutic approach for a restricted subset of oncogene-addicted NSCLC. Prospect ive trials refining this strategy are ongoing. A next step will probably aim at combining BRAF inhibitors and immunotherapy or alternatively improve a multilevel mitogen-activated protein kinase (MAPK) pathway blockade by combining with ERK inhibitors.