837 resultados para microsatellite-centromere mapping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To report a novel phenotype of autosomal dominant atypical congenital cataract associated with variable expression of microcornea, microphthalmia, and iris coloboma linked to chromosome 2. Molecular analysis of this phenotype may improve our understanding of anterior segment development. DESIGN: Observational case study, genome linkage analysis, and gene mutation screening. PARTICIPANTS: Three families, 1 Egyptian and 2 Belgians, with a total of 31 affected were studied. METHODS: Twenty-one affected subjects and 9 first-degree relatives underwent complete ophthalmic examination. In the Egyptian family, exclusion of PAX6, CRYAA, and MAF genes was demonstrated by haplotype analysis using microsatellite markers on chromosomes 11, 16, and 21. Genome-wide linkage analysis was then performed using 385 microsatellite markers on this family. In the 2 Belgian families, the PAX6 gene was screened for mutations by direct sequencing of all exons. MAIN OUTCOME MEASURES: Phenotype description, genome-wide linkage of the phenotype, linkage to the PAX6, CRYAA, and MAF genes, and mutation detection in the PAX6 gene. RESULTS: Affected members of the 3 families had bilateral congenital cataracts inherited in an autosomal dominant pattern. A novel form of hexagonal nuclear cataract with cortical riders was expressed. Among affected subjects with available data, 95% had microcornea, 39% had microphthalmia, and 38% had iris coloboma. Seventy-five percent of the colobomata were atypical, showing a nasal superior location in 56%. A positive lod score of 4.86 was obtained at theta = 0 for D2S2309 on chromosome 2, a 4.9-Mb common haplotype flanked by D2S2309 and D2S2358 was obtained in the Egyptian family, and linkage to the PAX6, CRYAA, or MAF gene was excluded. In the 2 Belgian families, sequencing of the junctions and all coding exons of PAX6 did not reveal any molecular change. CONCLUSIONS: We describe a novel phenotype that includes the combination of a novel form of congenital hexagonal cataract, with variably expressed microcornea, microphthalmia, and atypical iris coloboma, not caused by PAX6 and mapping to chromosome 2. FINANCIAL DISCLOSURE(S): The authors have no proprietary or commercial interest in any materials discussed in this article.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic environmental monitoring networks enforced by wireless communication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influenced by the relief. The article shows how these relations, possibly regionalized and non-linear, can be modelled from data using the information from digital elevation models. The particular illustration of the developed methodology concerns the mapping of temperatures (including the situations of Föhn and temperature inversion) given the measurements taken from the Swiss meteorological monitoring network. The range of the methods used in the study includes data-driven feature selection, support vector algorithms and artificial neural networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary: Assessment of the quality of care of people with dementia - Dementia Care Mapping pilot

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The aim of this study was to develop models based on kernel regression and probability estimation in order to predict and map IRC in Switzerland by taking into account all of the following: architectural factors, spatial relationships between the measurements, as well as geological information. METHODS: We looked at about 240,000 IRC measurements carried out in about 150,000 houses. As predictor variables we included: building type, foundation type, year of construction, detector type, geographical coordinates, altitude, temperature and lithology into the kernel estimation models. We developed predictive maps as well as a map of the local probability to exceed 300 Bq/m(3). Additionally, we developed a map of a confidence index in order to estimate the reliability of the probability map. RESULTS: Our models were able to explain 28% of the variations of IRC data. All variables added information to the model. The model estimation revealed a bandwidth for each variable, making it possible to characterize the influence of each variable on the IRC estimation. Furthermore, we assessed the mapping characteristics of kernel estimation overall as well as by municipality. Overall, our model reproduces spatial IRC patterns which were already obtained earlier. On the municipal level, we could show that our model accounts well for IRC trends within municipal boundaries. Finally, we found that different building characteristics result in different IRC maps. Maps corresponding to detached houses with concrete foundations indicate systematically smaller IRC than maps corresponding to farms with earth foundation. CONCLUSIONS: IRC mapping based on kernel estimation is a powerful tool to predict and analyze IRC on a large-scale as well as on a local level. This approach enables to develop tailor-made maps for different architectural elements and measurement conditions and to account at the same time for geological information and spatial relations between IRC measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iowa state, county, and city engineering offices expend considerable effort monitoring the state’s approximately 25,000 bridges, most of which span small waterways. In fact, the need for monitoring is actually greater for bridges over small waterways because scour processes are exacerbated by the close proximity of abutments, piers, channel banks, approach embankments, and other local obstructions. The bridges are customarily inspected biennially by the county’s road department bridge inspectors. It is extremely time consuming and difficult to obtain consistent, reliable, and timely information on bridge-waterway conditions for so many bridges. Moreover, the current approaches to gather survey information is not uniform, complete, and quantitative. The methodology and associated software (DIGIMAP) developed through the present project enable a non-intrusive means to conduct fast, efficient, and accurate inspection of the waterways in the vicinity of the bridges and culverts using one technique. The technique combines algorithms image of registration and velocimetry using images acquired with conventional devices at the inspection site. The comparison of the current bridge inspection and monitoring methods with the DIGIMAP methodology enables to conclude that the new procedure assembles quantitative information on the waterway hydrodynamic and morphologic features with considerable reduced effort, time, and cost. It also improves the safety of the bridge and culvert inspections conducted during normal and extreme hydrologic events. The data and information are recorded in a digital format, enabling immediate and convenient tracking of the waterway changes over short or long time intervals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to validate microsatellite markers associated with resistance to soybean cyst nematode (Heterodera glycines Ichinohe) races 3 and 14, in soybean (Glycine max L.) genotypes, for use in marker-assisted selection (MAS) programs. Microsatellites of soybean linkage groups A2, D2 and G were tested in two populations, and their selection efficiencies were determined. The populations were 65 F2:3 families from Msoy8001 (resistant) x Conquista (susceptible) cross, and 66 F2:3 families of S5995 (resistant) x Renascença (susceptible) cross, evaluated for resistance to races 3 and 14, respectively. Families with female index up to 30% were considered moderately resistant. Markers of A2 and G linkage groups were associated with resistance to race 3. Markers Satt309 and GMENOD2B explained the greatest proportion of phenotypic variance in the different groups. The combinations Satt309+GMENOD2B and Satt309+Satt187 presented 100% selection efficiency. Resistance to race 14 was associated with markers of G linkage group, and selection efficiency in the Satt309+Satt356 combination was 100%. The selection differential obtained by phenotypic and marker assisted selection showed that both can result in similar gains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anàlisi de les interaccions, a nivell neuronal, que tenen lloc durant el desenvolupament embrionari entre el receptor Unc5B (receptor present a la membrana) i les proteïnes Netrin-1 i FLRT3 (fibronectin and leucine-rich transmembrane proteins). La interacció entre aquest receptor i Netrin-1 ha estat profundament estudiada fins al moment, de manera que es coneix que aquesta promou una repulsió en la guia d’axons durant el desenvolupament embrionari. A més, la interacció està implicada en la senyalització per a diferents processos com l’angiogènesi i la supervivència cel·lular. Per altra banda, la interacció entre neurones Unc5B positives i FLRT3, promou un retard en la migració de les neurones. Diversos estudis demostren que aquest retard en la migració està relacionat amb certes patologies mentals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the Pleistocene glaciations, the Alps were an efficient barrier to gene flow between isolated populations, often leading to allopatric speciation. Afterwards, the Alps strongly influenced the post-glacial recolonization of Europe and represent a major suture zone between differentiated populations. Two hybrid zones in the Swiss and French Alps between genetically and chromosomally well-differentiated species-the Valais shrew, Sorex antinorii, and the common shrew, S. araneus-were studied karyotypically and by analyzing the distribution of seven microsatellite loci. In the center of the Haslital hybrid zone the two species coexist over a distance of 900 m. Hybrid karyotypes, among them the most complex known in Sorex, are rare. F-statistics based on microsatellite data revealed a strong heterozygote deficit only in the center of the zone, due to the sympatric distribution of the two species with little hybridization between them. Structuring within the species (both F(IS) and F(ST)) was low. An hierarchical analysis showed a high level of interspecific differentiation. Results were compared with those previously reported in another hybrid zone located at Les Houches in the French Alps. Genetic structuring within and between species was comparable in both hybrid zones, although chromosomal incompatibilities are more important in Haslital, where a linkage block of the race-specific chromosomes should additionally impede gene flow. Evidence for a more restricted gene flow in Haslital comes from the genetically intermediate hybrid karyotypes, whereas in Les Houches, hybrid karyotypes are genetically identical to individuals of the pure karyotypic races. Genic and chromosomal introgression was observed in Les Houches, but not in Haslital. The possible influence of a river, separating the two species at Les Houches, on gene flow is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to develop new microsatellite markers in common bean. Ninety nine new microsatelitte loci were developed from a microsatellite enriched library for (CT)8 and (GT)8 motifs, from CAL-143 line. The majority of microsatellite sequences (51%) was related to cellular metabolism. The remaining sequences were associated to transcription functions. Only 17.2% of the sequences presented some level of similarity with other plant species genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this study were to detect quantitative trait loci (QTL) for protein content in soybean grown in two distinct tropical environments and to build a genetic map for protein content. One hundred eighteen soybean recombinant inbred lines (RIL), obtained from a cross between cultivars BARC 8 and Garimpo, were used. The RIL were cultivated in two distinct Brazilian tropical environments: Cascavel county, in Paraná, and Viçosa county, in Minas Gerais (24º57'S, 53º27'W and 20º45'S, 42º52'W, respectively). Sixty-six SSR primer pairs and 65 RAPD primers were polymorphic and segregated at a 1:1 proportion. Thirty poorly saturated linkage groups were obtained, with 90 markers and 41 nonlinked markers. For the lines cultivated in Cascavel, three QTL were mapped in C2, E and N linkage groups, which explained 14.37, 10.31 and 7.34% of the phenotypic variation of protein content, respectively. For the lines cultivated in Viçosa, two QTL were mapped in linkage groups G and #1, which explained 9.51 and 7.34% of the phenotypic variation of protein content. Based on the mean of the two environments, two QTL were identified: one in the linkage group E (9.90%) and other in the group L (7.11%). In order for future studies to consistently detect QTL effects of different environments, genotypes with greater stability should be used.