874 resultados para micro structure effects
Resumo:
Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about the effects of AMF and different AMF taxa on other important community properties such as nutrient acquisition, plant survival and soil structure. We established experimental grassland microcosms and tested the impact of AMF and of different AMF taxa on a number of grassland characteristics. We also tested whether plant species benefited from the same or different AMF taxa in subsequent growing seasons. AMF enhanced phosphorus acquisition, soil aggregation and survival of several plant species, but AMF did not increase total plant productivity. Moreover, AMF increased nitrogen acquisition by some plant species, but AMF had no effect on total N uptake by the plant community. Plant growth responses to AMF were temporally variable and some plant species obtained the highest biomass with different AMF in different years. Hence the results indicate that it may be beneficial for a plant to be colonized by different AMF taxa in different seasons. This study shows that AMF play a key role in grassland by improving plant nutrition and soil structure, and by regulating the make-up of the plant community.
Resumo:
Soil tillage promotes changes in soil structure. The magnitude of the changes varies with the nature of the soil, tillage system and soil water content and decreases over time after tillage. The objective of this study was to evaluate short-term (one year period) and long-term (nine year period) effects of soil tillage and nutrient sources on some physical properties of a very clayey Hapludox. Five tillage systems were evaluated: no-till (NT), chisel plow + one secondary disking (CP), primary + two (secondary) diskings (CT), CT with burning of crop residues (CTb), and CT with removal of crop residues from the field (CTr), in combination with five nutrient sources: control without nutrient application (C); mineral fertilizers, according to technical recommendations for each crop (MF); 5 Mg ha-1 yr-1 of poultry litter (wetmatter) (PL); 60 m³ ha-1 yr-1 of cattle slurry (CS) and; 40 m³ ha-1 yr-1 of swine slurry (SS). Bulk density (BD), total porosity (TP), and parameters related to the water retention curve (macroporosity, mesoporosity and microporosity) were determined after nine years and at five sampling dates during the tenth year of the experiment. Soil physical properties were tillage and time-dependent. Tilled treatments increased total porosity and macroporosity, and reduced bulk density in the surface layer (0.00-0.05 m), but this effect decreased over time after tillage operations due to natural soil reconsolidation, since no external stress was applied in this period. Changes in pore size distribution were more pronounced in larger and medium pore diameter classes. The bulk density was greatest in intermediate layers in all tillage treatments (0.05-0.10 and 0.12-0.17 m) and decreased down to the deepest layer (0.27-0.32 m), indicating a more compacted layer around 0.05-0.20 m. Nutrient sources did not significantly affect soil physical and hydraulic properties studied.
Resumo:
Recent findings in neuroscience suggest that adult brain structure changes in response to environmental alterations and skill learning. Whereas much is known about structural changes after intensive practice for several months, little is known about the effects of single practice sessions on macroscopic brain structure and about progressive (dynamic) morphological alterations relative to improved task proficiency during learning for several weeks. Using T1-weighted and diffusion tensor imaging in humans, we demonstrate significant gray matter volume increases in frontal and parietal brain areas following only two sessions of practice in a complex whole-body balancing task. Gray matter volume increase in the prefrontal cortex correlated positively with subject's performance improvements during a 6 week learning period. Furthermore, we found that microstructural changes of fractional anisotropy in corresponding white matter regions followed the same temporal dynamic in relation to task performance. The results make clear how marginal alterations in our ever changing environment affect adult brain structure and elucidate the interrelated reorganization in cortical areas and associated fiber connections in correlation with improvements in task performance.
Resumo:
This paper tests some hypothesis about the determinants of the local tax structure. In particular, we focus on the effects that the property tax deductibility in the national income tax has on the relative use of the property tax and user charges. We deal with the incentive effects that local governments face regarding the different sources of revenue by means of a model in which the local tax structure and the level of public expenditure arise as a result of the maximizing behaviour of local politicians subject to the economic effects of the tax system. We attempt to test the hypothesis developed with data corresponding to a set of Spanish municipalities during the period 1987-9l. We find that tax deductibility provides incentives to raise revenues from the property tax but does not introduce a biass against user charges or in favor of overall spending growth
Resumo:
A new approach to the local measurement of residual stress in microstructures is described in this paper. The presented technique takes advantage of the combined milling-imaging features of a focused ion beam (FIB) equipment to scale down the widely known hole drilling method. This method consists of drilling a small hole in a solid with inherent residual stresses and measuring the strains/displacements caused by the local stress release, that takes place around the hole. In the presented case, the displacements caused by the milling are determined by applying digital image correlation (DIC) techniques to high resolution micrographs taken before and after the milling process. The residual stress value is then obtained by fitting the measured displacements to the analytical solution of the displacement fields. The feasibility of this approach has been demonstrated on a micromachined silicon nitride membrane showing that this method has high potential for applications in the field of mechanical characterization of micro/nanoelectromechanical systems.
Resumo:
Different aspects of the structure-magnetism and morphology-magnetism correlation in the ultrathin limit are studied in epitaxial Fe films grown on MgO(001). In the initial stages of growth the presence of substrate steps, intrinsically higher than an Fe atomic layer, prevent the connection between Fe islands and hence the formation of large volume magnetic regions. This is proposed as an explanation to the superparamagnetic nature of ultrathin Fe films grown on MgO in addition to the usually considered islanded, or Vollmer-Weber, growth. Using this model, we explain the observed transition from superparamagnetism to ferromagnetism for Fe coverages above 3 monolayers (ML). However, even though ferromagnetism and magnetocrystalline anisotropy are observed for 4 ML, complete coverage of the MgO substrate by the Fe ultrathin films only occurs around 6 ML as determined by polar Kerr spectra and simulations that consider different coverage situations. In annealed 3.5 ML Fe films, shape or configurational anisotropy dominates the intrinsic magnetocrystalline anisotropy, due to an annealing induced continuous to islanded morphological transition. A small interface anisotropy in thicker films is observed, probably due to dislocations observed at the Fe¿MgO(001) interface.
Resumo:
A study of the magneto-optical (MO) spectral response of Co nanoparticles embedded in MgO as a function of their size and concentration in the spectral range from 1.4 to 4.3 eV is presented. The nanoparticle layers were obtained by sputtering at different deposition temperatures. Transmission electron microscopy measurements show that the nanoparticles have a complex structure which consists of a crystalline core having a hexagonal close-packed structure and an amorphous crust. Using an effective-medium approximation we have obtained the MO constants of the Co nanoparticles. These MO constants are different from those of continuous Co layers and depend on the size of the crystalline core. We associate these changes with the size effect of the intraband contribution to the MO constants, related to a reduction of the relaxation time of the electrons into the nanoparticles.
Resumo:
In the Earth's carbon cycle, C stocks in the soil are higher than in vegetation and atmosphere. Maintaining and conserving organic C concentrations in the soil by specific management practices can improve soil fertility and productivity. The aim of this study was to evaluate the impact of agricultural management techniques and influence of water regime (flooded or drained) on the structure of humic substances by excitation/emission matrix fluorescence. Six samples of a Planosol (Planossolo by the Brazilian System of Soil Classification) were collected from a rice field. Humic substances (HS) were extracted from flooded and drained soil under different agricultural management techniques: conventional tillage, reduced tillage and grassland. Two peaks at a long emission wavelength were observed in the EEM spectra of HA whereas those of the corresponding FA contained a unique fluorophore at an intermediate excitation/emission wavelength pair (EEWP) value. The fluorescence intensity measured by total luminescence (FI TL) of HA was lower than that of the corresponding FA. A comparison of all samples (i.e., the HA values compared to each other) revealed only slight differences in the EEWP position, but the FI TL values were significantly different. In this soil, anoxic conditions and reduced tillage (little plowing) seem to favor a higher degree of humification of the soil organic matter compared with aerated conditions and conventional tillage.
Resumo:
Nitrogen incorporates into Fe thin films during reactively sputtered TiN capping layer deposition. The influence that this nitrogen incorporation has both on the structure and magnetic properties is discussed for a series of Fe~001! thin films grown at different temperatures. A higher nitrogen content is accompanied by distortion in the Fe lattice and by reduction in the Fe magnetization saturation as well as in the effective anisotropy constant, K. The reduction of K brings as a consequence lowering in the coercive field with respect to equivalent Fe films with no nitrogen present.
Resumo:
We study the influence of Nb doping on the TiO2 anatase-to-rutile phase transition, using combined transmission electron microscopy, Raman spectroscopy, x-ray diffraction and selected area electron diffraction analysis. This approach enabled anatase-to-rutile phase transition hindering to be clearly observed for low Nb-doped TiO2 samples. Moreover, there was clear grain growth inhibition in the samples containing Nb. The use of high resolution transmission electron microscopy with our samples provides an innovative perspective compared with previous research on this issue. Our analysis shows that niobium is segregated from the anatase structure before and during the phase transformation, leading to the formation of NbO nanoclusters on the surface of the TiO2 rutile nanoparticles.
Resumo:
This paper tests some hypothesis about the determinants of the local tax structure. In particular, we focus on the effects that the property tax deductibility in the national income tax has on the relative use of the property tax and user charges. We deal with the incentive effects that local governments face regarding the different sources of revenue by means of a model in which the local tax structure and the level of public expenditure arise as a result of the maximizing behaviour of local politicians subject to the economic effects of the tax system. We attempt to test the hypothesis developed with data corresponding to a set of Spanish municipalities during the period 1987-9l. We find that tax deductibility provides incentives to raise revenues from the property tax but does not introduce a biass against user charges or in favor of overall spending growth
Resumo:
Soils play a fundamental role in the production of human foods. The Oxisols in the state of Paraná are among the richest and most productive soils in Brazil, but degradation and low porosity are frequently documented, due to intensive farming involving various management strategies and the application of high-tech solutions. This study aims to investigate changes in the porosity of two Red Oxisols (Latossolos Vermelhos), denoted LVef (eutroferric) and LVdf (dystroferric) under conventional and no-tillage soil management, with a succession of annual crops of soybean, maize and wheat over a continuous period of more than 20 years. After describing the soil profiles under native forest, no-tillage management and conventional tillage using the crop profile method, deformed and non-deformed soil samples were collected from the volumes most compacted by human intervention and the physical, chemical and mineralogical properties analyzed. The various porosity classes (total pore volume, inter-aggregate porosity between channels and biological cavities) and intra-aggregate porosity (determined in 10 cm³ saturated clods subjected to a pressure of -10 kPa to obtain a pore volume with a radius (r eq), > 15 μm and < 15 μm). The results showed that the effects of no-tillage farming on porosity are more pronounced in both soil types. Porosity of the LVdf was higher than pf the LVef soil, whatever the management type. In the LVdf soil, only pores with a radius of > 15 μm were affected by farming whereas in the LVef soil, pores with a radius of < 15 μm were affected as well.
Resumo:
Irrigation with treated domestic sewage wastewater (TSE) is an agricultural practice to reduce water requirements of agroecossystems and the nutrient load impact on freshwaters, but adverse effects on soil chemical (salinization, sodification, etc.) and soil physical properties (alteration in soil porosity and hydraulic conductivity, etc.) have been reported. This study aimed to define some relationships among these changes in an Oxisol using multivariate analysis. Corn (Zea mays L.) and sunflower (Helianthus annuus L.) were grown for two years, irrigated with TSE. The following soil properties were determined: Ca2+; Mg2+; Na+; K+ and H + Al contents, cationic exchangeable capacity (CEC), sum of bases (SB), base saturation (V), texture (sand, silt and clay), macro-, micro-, and cryptoporosity (V MA, V MI and V CRI), water content at soil saturation (θS) and at field capacity (θFC), residual water content (θR), soil bulk density (d s), water dispersed clay (WDC) and saturated hydraulic conductivity (K SAT). Factor analysis revealed the following six principal factors: Fine Porosity (composed of Na+; K+; WDC, θR, θRFC, and V CRI); Large Porosity (θS, d s, V MA, Vs); Soil CEC (Ca2+; Mg2+; CEC, SB, V); Soil Acidity (H + Al); and Soil Texture (factors 5 and 6). A dual pore structure appears clearly to the factors 1 and 2, with an apparent relationship between fine porosity and the monovalent cations Na+ and K+. The irrigation (with potable sodic tap water or sewage wastewater) only had a significant effect on Fine Porosity and Large Porosity factors, while factors 3 and 4 (Soil CEC and Soil Acidity) were correlated with soil depth. The main conclusion was a shift in pore distribution (large to fine pores) during irrigation with TSE, which induces an increase of water storage and reduces the capacity of drainage of salts.
Resumo:
Intensive agriculture, in which detrimental farming practices lessen food abundance and/or reduce food accessibility for many animal species, has led to a widespread collapse of farmland biodiversity. Vineyards in central and southern Europe are intensively cultivated; though they may still harbour several rare plant and animal species, they remain little studied. Over the past decades, there has been a considerable reduction in the application of insecticides in wine production, with a progressive shift to biological control (integrated production) and, to a lesser extent, organic production. Spraying of herbicides has also diminished, which has led to more vegetation cover on the ground, although most vineyards remain bare, especially in southern Europe. The effects of these potentially positive environmental trends upon biodiversity remain mostly unknown as regards vertebrates. The Woodlark (Lullula arborea) is an endangered, short-distance migratory bird that forages and breeds on the ground. In southern Switzerland (Valais), it occurs mostly in vineyards. We used radiotracking and mixed effects logistic regression models to assess Woodlark response to modern vineyard farming practices, study factors driving foraging micro-habitat selection, and determine optimal habitat profile to inform management. The presence of ground vegetation cover was the main factor dictating the selection of foraging locations, with an optimum around 55% at the foraging patch scale. These conditions are met in integrated production vineyards, but only when grass is tolerated on part of the ground surface, which is the case on ca. 5% of the total Valais vineyard area. In contrast, conventionally managed vineyards covering a parts per thousand yen95% of the vineyard area are too bare because of systematic application of herbicides all over the ground, whilst the rare organic vineyards usually have a too-dense sward. The optimal mosaic with ca. 50% ground vegetation cover is currently achieved in integrated production vineyards where herbicide is applied every second row. In organic production, ca. 50% ground vegetation cover should be promoted, which requires regular mechanical removal of ground vegetation. These measures are likely to benefit general biodiversity in vineyards.
Resumo:
Within the noncollinear local spin-density approximation, we have studied the ground state structure of a parabolically confined quantum wire submitted to an in-plane magnetic field, including both Rashba and Dresselhaus spin-orbit interactions. We have explored a wide range of linear electronic densities in the weak (strong) coupling regimes that appear when the ratio of spin-orbit to confining energy is small (large). These results are used to obtain the conductance of the wire. In the strong coupling limit, the interplay between the applied magnetic field¿irrespective of the in-plane direction, the exchange-correlation energy, and the spin-orbit energy-produces anomalous plateaus in the conductance vs linear density plots that are otherwise absent, or washes out plateaus that appear when the exchange-correlation energy is not taken into account.