895 resultados para membrane preparation and structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new total synthesis of the marine macrolide (-)-zampanolide (1) and the structurally and stereochemically related non-natural levorotatory enantiomer of (+)-dactylolide (2), that is, ent-2, has been developed. The synthesis features a high-yielding, selective intramolecular Horner-Wadsworth-Emmons (HWE) reaction to close the 20-membered macrolactone ring of 1 and ent-2. The β-keto phosphonate/aldehyde precursor for the ring-closure reaction was obtained by esterification of a ω-diethylphosphono carboxylic acid fragment and a secondary alcohol fragment incorporating the THP ring that is embedded in the macrocyclic core structure of 1 and ent-2. THP ring formation was accomplished through a segment coupling Prins-type cyclization. Employing the same overall strategy, 13-desmethylene-ent-2 as well as the monocyclic desTHP derivatives of 1 and ent-2 were prepared. Synthetic 1 inhibited human cancer cell growth in vitro with nM IC(50) values, while ent-2, which lacks the diene-containing hemiaminal-linked side chain of 1, is 25- to 260-fold less active. 13-Desmethylene-ent-2 as well as the reduced versions of ent-2 and 13-desmethylene-ent-2 all showed similar cellular activity as ent-2 itself. The same activity level was attained by the monocyclic desTHP derivative of 1. Oxidation of the aldehyde functionality of ent-2 gave a carboxylic acid that was converted into the corresponding N-hexyl amide. The latter showed only μM antiproliferative activity, thus being several hundred-fold less potent than 1.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The study is part of a nationwide evaluation of complementary and alternative medicine (CAM) in primary care in Switzerland. The goal was to evaluate the extent and structure of basic health insurance expenditures for complementary and alternative medicine in Swiss primary care. METHODS: The study was designed as a cross-sectional evaluation of Swiss primary care providers and included 262 certified CAM physicians, 151 noncertified CAM physicians and 172 conventional physicians. The study was based on data from a mailed questionnaire and on reimbursement information obtained from health insurers. It was therefore purely observational, without interference into diagnostic and therapeutic procedures applied or prescribed by physicians. Main outcome measures included average reimbursed costs per patient, structured into consultation- and medication-related costs, and referred costs. RESULTS: Total average reimbursed cost per patient did not differ between CAM physicians and conventional practitioners, but considerable differences were observed in cost structure. The proportions of reimbursed costs for consultation time were 56% for certified CAM, 41% for noncertified CAM physicians and 40% for conventional physicians; medication costs--including expenditures for prescriptions and directly dispensed drugs--respectively accounted for 35%, 18%, and 51% of costs. CONCLUSION: The results indicate no significant difference for overall treatment cost per patient between CAM and COM primary care in Switzerland. However, CAM physicians treat lower numbers of patients and a more cost-favourable patient population than conventional physicians. Differences in cost structure reflect more patient-centred and individualized treatment modalities of CAM physicians.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PDZ-binding motifs are found in the C-terminal tails of numerous integral membrane proteins where they mediate specific protein-protein interactions by binding to PDZ-containing proteins. Conventional yeast two-hybrid screens have been used to probe protein-protein interactions of these soluble C termini. However, to date no in vivo technology has been available to study interactions between the full-length integral membrane proteins and their cognate PDZ-interacting partners. We previously developed a split-ubiquitin membrane yeast two-hybrid (MYTH) system to test interactions between such integral membrane proteins by using a transcriptional output based on cleavage of a transcription factor from the C terminus of membrane-inserted baits. Here we modified MYTH to permit detection of C-terminal PDZ domain interactions by redirecting the transcription factor moiety from the C to the N terminus of a given integral membrane protein thus liberating their native C termini. We successfully applied this "MYTH 2.0" system to five different mammalian full-length renal transporters and identified novel PDZ domain-containing partners of the phosphate (NaPi-IIa) and sulfate (NaS1) transporters that would have otherwise not been detectable. Furthermore this assay was applied to locate the PDZ-binding domain on the NaS1 protein. We showed that the PDZ-binding domain for PDZK1 on NaS1 is upstream of its C terminus, whereas the two interacting proteins, NHERF-1 and NHERF-2, bind at a location closer to the N terminus of NaS1. Moreover NHERF-1 and NHERF-2 increased functional sulfate uptake in Xenopus oocytes when co-expressed with NaS1. Finally we used MYTH 2.0 to demonstrate that the NaPi-IIa transporter homodimerizes via protein-protein interactions within the lipid bilayer. In summary, our study establishes the MYTH 2.0 system as a novel tool for interactive proteomics studies of membrane protein complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maintenance of the lipid composition is important for proper function and homeostasis of the mitochondrion. In Trypanosoma brucei, the enzymes involved in the biosynthesis of the mitochondrial phospholipid, phosphatidylglycerol (PG), have not been studied experimentally. We now report the characterization of T. brucei phosphatidylglycerophosphate synthase (TbPgps), the rate-limiting enzyme in PG formation, which was identified based on its homology to other eukaryotic Pgps. Lipid quantification and metabolic labelling experiments show that TbPgps gene knock-down results in loss of PG and a reduction of another mitochondria-specific phospholipid, cardiolipin. Using immunohistochemistry and immunoblotting of digitonin-isolated mitochondria, we show that TbPgps localizes to the mitochondrion. Moreover, reduced TbPgps expression in T. brucei procyclic forms leads to alterations in mitochondrial morphology, reduction in the amounts of respiratory complexes III and IV and, ultimately, parasite death. Using native polyacrylamide gel electrophoresis we demonstrate for the first time in a eukaryotic organism that TbPgps is a component of a 720 kDa protein complex, co-migrating with T. brucei cardiolipin synthase and cytochrome c1, a protein of respiratory complex III.