939 resultados para marine spatial planning
Resumo:
Marine heatwaves (MHWs) have been observed around the world and are expected to increase in intensity and frequency under anthropogenic climate change. A variety of impacts have been associated with these anomalous events, including shifts in species ranges, local extinctions and economic impacts on seafood industries through declines in important fishery species and impacts on aquaculture. Extreme temperatures are increasingly seen as important influences on biological systems, yet a consistent definition of MHWs does not exist. A clear definition will facilitate retrospective comparisons between MHWs, enabling the synthesis and a mechanistic understanding of the role of MHWs in marine ecosystems. Building on research into atmospheric heatwaves, we propose both a general and specific definition for MHWs, based on a hierarchy of metrics that allow for different data sets to be used in identifying MHWs. We generally define a MHW as a prolonged discrete anomalously warm water event that can be described by its duration, intensity, rate of evolution, and spatial extent. Specifically, we consider an anomalously warm event to be a MHW if it lasts for five or more days, with temperatures warmer than the 90th percentile based on a 30-year historical baseline period. This structure provides flexibility with regard to the description of MHWs and transparency in communicating MHWs to a general audience. The use of these metrics is illustrated for three 21st century MHWs; the northern Mediterranean event in 2003, the Western Australia ‘Ningaloo Niño’ in 2011, and the northwest Atlantic event in 2012. We recommend a specific quantitative definition for MHWs to facilitate global comparisons and to advance our understanding of these phenomena.
Resumo:
Marine heatwaves (MHWs) have been observed around the world and are expected to increase in intensity and frequency under anthropogenic climate change. A variety of impacts have been associated with these anomalous events, including shifts in species ranges, local extinctions and economic impacts on seafood industries through declines in important fishery species and impacts on aquaculture. Extreme temperatures are increasingly seen as important influences on biological systems, yet a consistent definition of MHWs does not exist. A clear definition will facilitate retrospective comparisons between MHWs, enabling the synthesis and a mechanistic understanding of the role of MHWs in marine ecosystems. Building on research into atmospheric heatwaves, we propose both a general and specific definition for MHWs, based on a hierarchy of metrics that allow for different data sets to be used in identifying MHWs. We generally define a MHW as a prolonged discrete anomalously warm water event that can be described by its duration, intensity, rate of evolution, and spatial extent. Specifically, we consider an anomalously warm event to be a MHW if it lasts for five or more days, with temperatures warmer than the 90th percentile based on a 30-year historical baseline period. This structure provides flexibility with regard to the description of MHWs and transparency in communicating MHWs to a general audience. The use of these metrics is illustrated for three 21st century MHWs; the northern Mediterranean event in 2003, the Western Australia ‘Ningaloo Niño’ in 2011, and the northwest Atlantic event in 2012. We recommend a specific quantitative definition for MHWs to facilitate global comparisons and to advance our understanding of these phenomena.
Resumo:
We studied the loadings of dissolved organic matter (DOM) and nutrients from the Neva River into the Eastern Gulf of Finland, as well as their distribution within the salinity gradient. Concentrations of dissolved organic carbon (DOC) ranged from 390 to 840 μM, and were related to absorption of colored DOM (CDOM) at 350 nm, aCDOM(350), ranging from 2.70 to 17.8 m-1. With increasing salinity both DOC and aCDOM decreased, whereas the slope of aCDOM spectra, SCDOM(300-700), ranging from 14.3 to 21.2 μm-1, increased with salinity.
Resumo:
We studied the loadings of dissolved organic matter (DOM) and nutrients from the Neva River into the Eastern Gulf of Finland, as well as their distribution within the salinity gradient. Concentrations of dissolved organic carbon (DOC) ranged from 390 to 840 μM, and were related to absorption of colored DOM (CDOM) at 350 nm, aCDOM(350), ranging from 2.70 to 17.8 m-1. With increasing salinity both DOC and aCDOM decreased, whereas the slope of aCDOM spectra, SCDOM(300-700), ranging from 14.3 to 21.2 μm-1, increased with salinity.
Resumo:
Marine protected areas (MPAs) are commonly employed to protect ecosystems from threats like overfishing. Ideally, MPA design should incorporate movement data from multiple target species to ensure sufficient habitat is protected. We used long-term acoustic telemetry and network analysis to determine the fine-scale space use of five shark and one turtle species at a remote atoll in the Seychelles, Indian Ocean, and evaluate the efficacy of a proposed MPA. Results revealed strong, species-specific habitat use in both sharks and turtles, with corresponding variation in MPA use. Defining the MPA's boundary from the edge of the reef flat at low tide instead of the beach at high tide (the current best in Seychelles) significantly increased the MPA's coverage of predator movements by an average of 34%. Informed by these results, the larger MPA was adopted by the Seychelles government, demonstrating how telemetry data can improve shark spatial conservation by affecting policy directly.
Resumo:
Marine protected areas (MPAs) are commonly employed to protect ecosystems from threats like overfishing. Ideally, MPA design should incorporate movement data from multiple target species to ensure sufficient habitat is protected. We used long-term acoustic telemetry and network analysis to determine the fine-scale space use of five shark and one turtle species at a remote atoll in the Seychelles, Indian Ocean, and evaluate the efficacy of a proposed MPA. Results revealed strong, species-specific habitat use in both sharks and turtles, with corresponding variation in MPA use. Defining the MPA's boundary from the edge of the reef flat at low tide instead of the beach at high tide (the current best in Seychelles) significantly increased the MPA's coverage of predator movements by an average of 34%. Informed by these results, the larger MPA was adopted by the Seychelles government, demonstrating how telemetry data can improve shark spatial conservation by affecting policy directly.
Resumo:
Anthropogenic climate change is causing unprecedented rapid responses in marine communities, with species across many different taxonomic groups showing faster shifts in biogeographic ranges than in any other ecosystem. Spatial and temporal trends for many marine species are difficult to quantify, however, due to the lack of long-term datasets across complete geographical distributions and the occurrence of small-scale variability from both natural and anthropogenic drivers. Understanding these changes requires a multidisciplinary approach to bring together patterns identified within long-term datasets and the processes driving those patterns using biologically relevant mechanistic information to accurately attribute cause and effect. This must include likely future biological responses, and detection of the underlying mechanisms in order to scale up from the organismal level to determine how communities and ecosystems are likely to respond across a range of future climate change scenarios. Using this multidisciplinary approach will improve the use of robust science to inform the development of fit-for-purpose policy to effectively manage marine environments in this rapidly changing world.
Resumo:
Anthropogenic climate change is causing unprecedented rapid responses in marine communities, with species across many different taxonomic groups showing faster shifts in biogeographic ranges than in any other ecosystem. Spatial and temporal trends for many marine species are difficult to quantify, however, due to the lack of long-term datasets across complete geographical distributions and the occurrence of small-scale variability from both natural and anthropogenic drivers. Understanding these changes requires a multidisciplinary approach to bring together patterns identified within long-term datasets and the processes driving those patterns using biologically relevant mechanistic information to accurately attribute cause and effect. This must include likely future biological responses, and detection of the underlying mechanisms in order to scale up from the organismal level to determine how communities and ecosystems are likely to respond across a range of future climate change scenarios. Using this multidisciplinary approach will improve the use of robust science to inform the development of fit-for-purpose policy to effectively manage marine environments in this rapidly changing world.
Resumo:
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that “Lévy random walks”—which can produce power law path length distributions—are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent’s goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers.
Resumo:
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that “Lévy random walks”—which can produce power law path length distributions—are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent’s goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers.
Resumo:
This paper discusses some aspects of hunter-gatherer spatial organization in southern South Patagonia, in later times to 10,000 cal yr BP. Various methods of spatial analysis, elaborated with a Geographic Information System (GIS) were applied to the distributional pattern of archaeological sites with radiocarbon dates. The shift in the distributional pattern of chronological information was assessed in conjunction with other lines of evidence within a biogeographic framework. Accordingly, the varying degrees of occupation and integration of coastal and interior spaces in human spatial organization are explained in association with the adaptive strategies hunter-gatherers have used over time. Both are part of the same human response to changes in risk and uncertainty variability in the region in terms of resource availability and environmental dynamics.
Resumo:
[EN] Loggerhead sea turtles (Caretta caretta) originating from the Western Atlantic carry out one of the largest marine migrations, reaching the eastern Atlantic and Mediterranean Sea. It has been proposed that this transatlantic journey is simply a consequence of drifting, with the lack of a target destination and a passive dispersal with oceanic currents. This predicts that the size of the source populations and geographic distance to the feeding grounds should play important roles in defining stock composition in the eastern Atlantic and Mediterranean Sea.
Resumo:
[EN] The integration of satellite telemetry, remotely sensed environmental data, and habitat/environmental modelling has provided for a growing understanding of spatial and temporal ecology of species of conservation concern. The Republic of Cape Verde comprises the only substantial rookery for the loggerhead turtle Caretta caretta in the eastern Atlantic. A size related dichotomy in adult foraging patterns has previously been revealed for adult sea turtles from this population with a proportion of adults foraging neritically, whilst the majority forage oceanically. Here we describe observed habitat use and employ ecological niche modelling to identify suitable foraging habitats for animals utilising these two distinct behavioural strategies. We also investigate how these predicted habitat niches may alter under the influence of climate change induced oceanic temperature rises.
Resumo:
The literature on residences and citizens’ transports has focused on either reforming traffic managing in response to residential relocation or post-evaluation of urban planning policies or the evolution of the urban spatial form. In a city there are hotspots that attract the citizens and most of the transportation in the city arises as the citizens’ movement between their residence and the hotspots. Little scholarly attention has been devoted to the possibility to minimize citizens’ transportation in the city by the urban planning of residential areas. In this paper we propose a method to evaluate the environmental impact (in terms of CO2-emissions) of urban plans of residential areas. The method is illustrated in a Swedish case of a midsize city which is presently preoccupied with urban planning of new residential areas in response to substantial population growth due to immigration. The residential plans aims to increase the compactness and residential density in the current center and sub centers leads to less CO2 emissions compare to urban expansion to the edge of the city. The plans of concentrated apartment buildings are more effective in meeting residential needs and mitigating CO2 emissions than dispersed single-family houses.
Resumo:
The International Long-Term Ecological Research (ILTER) network comprises > 600 scientific groups conducting site-based research within 40 countries. Its mission includes improving the understanding of global ecosystems and informs solutions to current and future environmental problems at the global scales. The ILTER network covers a wide range of social-ecological conditions and is aligned with the Programme on Ecosystem Change and Society (PECS) goals and approach. Our aim is to examine and develop the conceptual basis for proposed collaboration between ILTER and PECS. We describe how a coordinated effort of several contrasting LTER site-based research groups contributes to the understanding of how policies and technologies drive either toward or away from the sustainable delivery of ecosystem services. This effort is based on three tenets: transdisciplinary research; cross-scale interactions and subsequent dynamics; and an ecological stewardship orientation. The overarching goal is to design management practices taking into account trade-offs between using and conserving ecosystems toward more sustainable solutions. To that end, we propose a conceptual approach linking ecosystem integrity, ecosystem services, and stakeholder well-being, and as a way to analyze trade-offs among ecosystem services inherent in diverse management options. We also outline our methodological approach that includes: (i) monitoring and synthesis activities following spatial and temporal trends and changes on each site and by documenting cross-scale interactions; (ii) developing analytical tools for integration; (iii) promoting trans-site comparison; and (iv) developing conceptual tools to design adequate policies and management interventions to deal with trade-offs. Finally, we highlight the heterogeneity in the social-ecological setting encountered in a subset of 15 ILTER sites. These study cases are diverse enough to provide a broad cross-section of contrasting ecosystems with different policy and management drivers of ecosystem conversion; distinct trends of biodiversity change; different stakeholders’ preferences for ecosystem services; and diverse components of well-being issues.