941 resultados para marine community dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a high resolution, multiproxy study of the relationship between pelagic and benthic environments of a coastal upwelling system in the subtropical NE Atlantic Ocean. Marine sediments corresponding to late MIS3 to the Holocene in the radiocarbon dated core GeoB7926, retrieved off Mauritania (21°N) were analysed to reconstruct productivity in surface waters and its linkage to deep waters during the last 35 ka BP. High latitude cold events and changes in atmospheric and oceanographic dynamics influenced upwelling intensity over this time period. Subsequently, this caused changes in primary productivity off this low-latitude coastal upwelling locality. The benthic foraminiferal fauna displays four main community shifts corresponding to fundamental climatic events, first of all during late MIS3 (35-28 ka BP), secondly from 28 to 19 ka BP (including Heinrich event 2 and the LGM), thirdly within Heinrich event 1, the Bølling Allerød and the Younger Dryas (18-11.5 ka BP) and finally during the Holocene (11.5-0 ka BP). In particular, strong pelagic-benthic coupling is apparent in MIS 3, as demonstrated by increased primary productivity, indicated by moderate DAR and the dominance of benthic foraminiferal species which prefer fresh phytodetritus. A decline in upwelling intensity and nutrient availability follows, which resulted in a proportionately larger amount of older, degraded matter, provoking a shift in the benthic foraminifera fauna composition. This rapid response of the benthic environment continues with a progressive increase in upwelling intensity due to sea level and oceanographic changes and according high surface production during the LGM. During Heinrich event 1 and the Younger Dryas, extreme levels of primary production actually hindered benthic environment through the development of low oxygen conditions. After this period, a final change in benthic foraminiferal community composition occurs which indicates a return to more oxygenated conditions during the Holocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wealth of sedimentary records aimed at reconstructing late Quaternary changes in productivity and temperature have been devoted to understanding linkages between the Indo-Pacific Warm Pool (IPWP) and other distant oceanic areas. Most of these reconstructions are based, however, on biogeochemical and sedimentological proxies, with comparatively less attention devoted to microfossils. A high-resolution (<1 ka) study of diatom concentrations and the community at site GeoB10038-4, recovered off southern Sumatra (ca. 6°S, 103°E), closely tracks the variations of diatom concentrations in the westernmost IPWP during the last glacial-interglacial cycle. The diatom record provides evidence that diatom paleoproductivity was highest during interglacials, primarily due to the input of lithogenics and nutrients following the rise in sea level after full glacials. In addition, the co-variation of total diatom concentration and Northern Hemisphere forcing for Marine Isotope Stage 5 suggests a direct response of diatom productivity and upwelling intensity to boreal summer insolation. Temporal shifts of the diverse diatom community at site GeoB10038-4 correspond well with the present-day seasonal monsoon pattern and the strengthening and weakening phases of upwelling along the southern coast of Sumatra. Resting spores of Chaetoceros, typical of nutrient-rich waters, were dominant during periods of highest diatom paleoproductivity and responded to the strengthening of the SE monsoon, while diatoms of oligotrophic to mesotrophic waters characterized intermonsoon periods. The close correspondence between the dominance of upwelling diatoms and the boreal summer insolation resembles the present-day dynamics of diatom production. The observed interglacial highs and glacial lows of diatom productivity at site GeoB10038-4 is a unique pattern in the late Quaternary tropics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand the validity of d18O proxy records as indicators of past temperature change, a series of experiments was conducted using an atmospheric general circulation model fitted with water isotope tracers (Community Atmosphere Model version 3.0, IsoCAM). A pre-industrial simulation was performed as the control experiment, as well as a simulation with all the boundary conditions set to Last Glacial Maximum (LGM) values. Results from the pre-industrial and LGM simulations were compared to experiments in which the influence of individual boundary conditions (greenhouse gases, ice sheet albedo and topography, sea surface temperature (SST), and orbital parameters) were changed each at a time to assess their individual impact. The experiments were designed in order to analyze the spatial variations of the oxygen isotopic composition of precipitation (d18Oprecip) in response to individual climate factors. The change in topography (due to the change in land ice cover) played a significant role in reducing the surface temperature and d18Oprecip over North America. Exposed shelf areas and the ice sheet albedo reduced the Northern Hemisphere surface temperature and d18Oprecip further. A global mean cooling of 4.1 °C was simulated with combined LGM boundary conditions compared to the control simulation, which was in agreement with previous experiments using the fully coupled Community Climate System Model (CCSM3). Large reductions in d18Oprecip over the LGM ice sheets were strongly linked to the temperature decrease over them. The SST and ice sheet topography changes were responsible for most of the changes in the climate and hence the d18Oprecip distribution among the simulations.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calving is a major mechanism of ice discharge of the Antarctic and Greenland ice sheets, and a change in calving front position affects the entire stress regime of marine terminating glaciers. The representation of calving front dynamics in a 2-D or 3-D ice sheet model remains non-trivial. Here, we present the theoretical and technical framework for a level-set method, an implicit boundary tracking scheme, which we implement into the Ice Sheet System Model (ISSM). This scheme allows us to study the dynamic response of a drainage basin to user-defined calving rates. We apply the method to Jakobshavn Isbræ, a major marine terminating outlet glacier of the West Greenland Ice Sheet. The model robustly reproduces the high sensitivity of the glacier to calving, and we find that enhanced calving triggers significant acceleration of the ice stream. Upstream acceleration is sustained through a combination of mechanisms. However, both lateral stress and ice influx stabilize the ice stream. This study provides new insights into the ongoing changes occurring at Jakobshavn Isbræ and emphasizes that the incorporation of moving boundaries and dynamic lateral effects, not captured in flow-line models, is key for realistic model projections of sea level rise on centennial timescales.