943 resultados para low-temperature heat capacity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of solid electrolytes, (Ce(0.8)Ln(0.2))(1 - x)MxO2 - delta(Ln = La, Nd, Sm, Gd, M:Alkali-earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite phase is formed at 800 degreesC. The electrical conductivity and the AC impedance spectra were measured. XPS spectra show that the oxygen vacancies increase owing to the MO doping, which results in the increase of the oxygen ionic transport number and conductivity. The performance of ceria-based solid electrolyte is improved. The effects of rare-earth and alkali-earth ions on the electricity were discussed. The open-circuit voltages and maximum power density of planar solid oxide fuel cell using (Ce0.8Sm0.2)(1 - 0.05)Ca0.05O2 - delta as electrolyte are 0.86 V and 33 mW . cm(-2), respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel solid-state method of the preparation of zinc sulfide nanoparticles is reported. By solid-state reaction of zinc acetate and thioacetamide at low temperature, zinc sulfide nanoparticles of different sizes were prepared. The temperature of preparation varied from room temperature to 300 degrees C. The particles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA), and photoluminescence spectrum. X-ray diffraction patterns revealed that the particles exhibited pure zinc-blende crystal structure and that particle size increased with increasing temperature. The TEM micrograph showed that the mean particle size was about 40 nm for the sample heated at 100 degrees C. A blue shift was observed in the photoluminescence emission spectrum. A possible mechanism of the reaction corresponding to our observation is proposed, (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The partial oxidation of methane with molecular oxygen was performed on Fe-Mo/SiO2 catalysts. Iron was loaded on the Mo/SiO2 catalyst by chemical vapor deposition of Fe-3(CO)(12). The catalyst showed good low-temperature activities at 723-823 K. Formaldehyde was a major condensable liquid product on the prepared catalyst. There were synergistic effects between iron and molybdenum in Fe-Mo/SiO2 catalysts for the production of formaldehyde from the methane partial oxidation. The activation energy of Mo/SiO2 decreased with the addition of iron and approached that of the Fe/SiO2. The concentration of isolated molybdenum species (the peak at 1148 K in TPR experiments) decreased as the ion concentration increased and had a linear relationship with the selectivity of methane to formaldehyde. The role of Fe and Mo in the Fe-Mo/SiO2 catalyst was proposed: Fe is the center for the C-H activation to generate reaction intermediates, and Mo is the one for the transformation of intermediates into formaldehyde. Those phenomena were predominant below 775 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solid electrolytes, BaCe(0.8)Ln(0.2)O(2.9) (Ln: Gd, Sm, Eu), were prepared by the sol-gel method. XRD indicated that a pure orthorhombic phase was formed at 900 degrees C. The synthesis temperature by the sol-gel method was about 600 degrees C: lower than the high temperature solid phase reaction method. The electrical conductivity and impedance spectra were measured and the conduction mechanism was studied. The grain-boundary resistance of the solid electrolyte could be reduced or eliminated by the sol-gel method. The conductivity of BaCe0.8Gd0.2O2.9 is 7.87 x 10(-2) S.cm(-1) at 800 degrees C. The open-circuit voltage of hydrogen-oxygen fuel cell using BaCe0.8Gd0.2O2.9 as electrolyte was near to 1 V and its maximum power density was 30 mW.cm(-2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistent spectral hole burning spectroscopy is applied to evaluate the low-temperature relaxation around the dye molecules doped in several types of polymers. The doped dye is tetraphenylporphine, and the measured polymers are vinyl polymers and main chain aromatic polymers. The changes of microscopic environments around the dye are evaluated from the changes in the hole profiles during temperature cycling experiments. The relaxation behavior of the polymers is discussed in relation to their chemical structures. (C) 1999 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CoWO4 nano-particles were successfully synthesized at a low temperature of 270 degrees C by a molten salt method, and effects of such processing parameters as holding time and salt quantity on the crystallization and development Of CoWO4 crystallites were initially studied. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM). and photoluminescent spectra techniques (PL), respectively. Experimental results showed that the well-crystallized CoWO4 nano-particles with ca. 45 nm in diameter could be obtained at 270 degrees C for a holding time of 8 h with 6:1 mass ratio of the salt to CoWO4 precursor, and XRD analysis evidenced that the as-prepared sample was a pure monoclinic phase Of CoWO4 with wolframite structure. Their PL spectra revealed that the CoWO4 nano-particles displayed a very strong PL peak at 453 nm with the excitation wavelength of 230 nm, and PL properties of CoWO4 crystallites relied on their crystalline state, especially on their particle size. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nickel tungstate (NiWO4) nano-particles were successfully synthesized at low temperatures by a molten salt method, and characterized by Xray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet visible spectra techniques (UV-vis), respectively. The effects of calcining temperature and salt quantity on the crystallization and development of NiWO4 crystallites were studied. Experimental results showed that the well-crystallized NiWO4 nano-particles with about 30 nm in diameter could be prepared at 270 degrees C with 6:1 mass ratio of the salt to NiWO4 precursor. XRD analysis confirmed that the product was a pure monoclinic phase of NiWO4 with wolframite structure. UV-vis spectrum revealed that NiWO4 nano-particles had good light absorption properties in both ultraviolet and visible light region. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Starting with the research status of bio-metallogenesis of Tl deposits and their geology, this work deals with the geological background of Tl enrichment and mineralization and the mechanism of bio- metal-logenesis of Tl deposits, as exemplified by Tl deposits in the low-temperature minerogenetic province. This research on the bio-metallogenesis of Tl deposits is focused on the correlations between bio-enrichment and Tl, the enrichment of Tl in micro-paleo-animals in rocks and ores, bio-fossil casts in Tl-rich ores, the involvement of bio-sulfur in minerogenesis and the enrichment of bio-genetic organic carbon in Tl ores. Thallium deposits have experienced two ore-forming stages: syngenetic bio- en-richment and epigenetic hydrothermal reworking (or transformation). Owing to the intense epigenetic hydrothermal reworking, almost no bio-residues remain in syngenetically bio-enriched Tl ores, thereby the Tl deposits display the characteristics of hydrothermally reoworked deposits.