962 resultados para low-cycle fatigue


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fatigue crack propagation behaviour of a low alloy, boron-containing steel has been examined after austenitizing at 900°C or 1250°C and tempering at a range of temperatures up to 400°C. Fatigue threshold values were found to vary with austenitizing and tempering treatment in a range between 3.3 to 6 MPa √m when tested at a stress ratio (R) of 0.2. Crack propagation rates in the Paris regime were insensitive to heat treatment variations. The crack propagation path was essentially transgranular in all conditions with small regions of intergranular facets appearing at growth rates around the knee of the da/dN vs ΔK curve. The crack front shape showed marked retardation in the centre of the specimen at low tempering temperatures. Experimental determinations and computer predictions of residual stress levels in the specimens indicated that this was due to a central residual compressive stress resulting from differential cooling rates and the volume change associated with the martensite transformation. The results are discussed in terms of microstructural and residual stress effects on fatigue behaviour. © 1987.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fatigue crack growth behaviour in a 15 wt% SiC particulate reinforced 6061 aluminium alloy has been examined using pre-cracked specimens. Crack initiation and early growth of fatigue cracks in smooth specimens has also been investigated using the technique of periodic replication. The composite contained a bimodal distribution of SiC particle sizes, and detailed attention was paid to interactions between the SiC particles and the growing fatigue-crack tip. At low stress intensity levels, the proportion of coarse SiC particles on the fatigue surfaces was much smaller than that on the metallographic sections, indicating that the fatigue crack tends to run through the matrix avoiding SiC particles. As the stress intensity level increases, the SiC particles ahead of the growing fatigue crack tip are fractured and the fatigue crack then links the fractured particles. The contribution of this monotonic fracture mode resulted in a higher growth rate for the composite than for the unreinforced alloy. An increase in the proportion of cracked, coarse SiC particles on the fatigue surface was observed for specimens tested at a higher stress ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a methodological scheme for the photovoltaic (PV) simulator design. With the advantages of a digital controller system, linear interpolation is proposed for precise fitting with higher computational efficiency. A novel control strategy that directly tackles two different duty cycles is proposed and implemented to achieve a full-range operation including short circuit (SC) and open circuit (OC) conditions. Systematic design procedures for both hardware and algorithm are explained, and a prototype is built. Experimental results confirm an accurate steady state performance under different load conditions, including SC and OC. This low power apparatus can be adopted for PV education and research with a limited budget.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current study applies a two-state switching regression model to examine the behavior of a hypothetical portfolio of ten socially responsible (SRI) equity mutual funds during the expansion and contraction phases of US business cycles between April 1991 and June 2009, based on the Carhart four-factor model, using monthly data. The model identified a business cycle effect on the performance of SRI equity mutual funds. Fund returns were less volatile during expansion/peaks than during contraction/troughs, as indicated by the standard deviation of returns. During contraction/troughs, fund excess returns were explained by the differential in returns between small and large companies, the difference between the returns on stocks trading at high and low Book-to-Market Value, the market excess return over the risk-free rate, and fund objective. During contraction/troughs, smaller companies offered higher returns than larger companies (ci = 0.26, p = 0.01), undervalued stocks out-performed high growth stocks (h i = 0.39, p <0.0001), and funds with growth objectives out-performed funds with other objectives (oi = 0.01, p = 0.02). The hypothetical SRI portfolio was less risky than the market (bi = 0.74, p <0.0001). During expansion/peaks, fund excess returns were explained by the market excess return over the risk-free rate, and fund objective. Funds with other objectives, such as balanced funds and income funds out-performed funds with growth objectives (oi = −0.01, p = 0.03). The hypothetical SRI portfolio exhibited similar risk as the market (bi = 0.93, p <0.0001). The SRI investor adds a third criterion to the risk and return trade-off of traditional portfolio theory. This constraint is social performance. The research suggests that managers of SRI equity mutual funds may diminish value by using social and ethical criteria to select stocks, but add value by superior stock selection. The result is that the performance of SRI mutual funds is very similar to that of the market. There was no difference in the value added among secular SRI, religious SRI, and vice screens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eyewall replacement cycle (ERC) is frequently observed during the evolution of intensifying Tropical Cyclones (TCs). Although intensely studied in recent years, the underlying mechanisms of ERC are still poorly understood, and the forecast of ERC remains a great challenge. To advance our understanding of ERC and provide insights in improvement of numerical forecast of ERC, a series of numerical simulations is performed to investigate ERCs in TC-like vortices on a f-plane. The simulated ERCs possess key features similar to those observed in real TCs including the formation of a secondary tangential wind maximum associated with the outer eyewall. The Sawyer-Eliassen equation and tangential momentum budget analyses are performed to diagnose the mechanisms underlying the secondary eyewall formation (SEF) and ERC. Our diagnoses reveal crucial roles of outer rainband heating in governing the formation and development of the secondary tangential wind maximum and demonstrate that the outer rainband convection must reach a critical strength relative to the eyewall before SEF and the subsequent ERC can occur. A positive feedback among low-level convection, acceleration of tangential winds in the boundary layer, and surface evaporation that leads to the development of ERC and a mechanism for the demise of inner eyewall that involves interaction between the transverse circulations induced by eyewall and outer rainband convection are proposed. The tangential momentum budget indicates that the net tendency of tangential wind is a small residual resultant from a large cancellation between tendencies induced by the resolved and sub-grid scale (SGS) processes. The large SGS contribution to the tangential wind budget explains different characteristics of ERC shown in previous numerical studies and poses a great challenge for a timely correct forecast of ERC. The sensitivity experiments show that ERCs are strongly subjected to model physics, vortex radial structure and background wind. The impact of model physics on ERC can be well understood with the interaction among eyewall/outer rainband heating, radilal inflow in the boundary layer, surface layer turbulent processes, and shallow convection in the moat. However, further investigations are needed to fully understand the exhibited sensitivities of ERC to vortex radial structure and background wind.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In questa tesi viene elaborata un'applicazione ultra-low power (ULP) basata su microcontrollore, per implementare la procedura di controllo di diversi circuiti di un tag RFID. Il tag preso in considerazione è pensato per lavorare in assenza di batteria, da cui la necessita' di ridurre i consumi di potenza. La sua attivazione deve essere inoltre comandata attraverso un'architettura Wake up Radio (WuR), in cui un segnale di controllo radio indirizza e attiva il circuito. Nello specifico, la rete di decodifica dell'indirizzo è stata realizzata mediante il modulo di comunicazione seriale del microcontrollore. Nel Capitolo 1 verrà introdotto il tema dell'Energy Harvesting. Nel Capitolo 2 verrà illustrata l'architettura del sistema nel suo complesso. Nel Capitolo 3 verrà spiegato dettagliatamente il funzionamento del microcontrollore scelto. Il Capitolo 4 sarà dedicato al firmware implementato per svolgere le operazioni fondamentali imputate al micro per i compiti di controllo. Verrà inoltre introdotto il codice VHDL sviluppato per emulare l'output del modulo WuR mediante un FPGA della famiglia Cyclone II. Nel Capitolo 5 verrà presentata una stima dei consumi del microcontrollore in funzione dei parametri di configurazione del sistema. Verrà inoltre effettuato un confronto con un altro microcontrollore che in alcune condizioni potrebbe rappresentare iun'alternativa valida di progetto. Nei Capitoli 6 e 7 saranno descritti possibili sviluppi futuri e conclusioni del progetto. Le specifiche di progetto rilevanti della tesi sono: 1. minimo consumo energetico possibile del microcontrollore ULP 2. elevata rapidità di risposta per la ricezione dei tag, per garantire la ricezione di un numero maggiore possibile di indirizzi (almeno 20 letture al secondo), in un range di tempo limitato 3. generazione di un segnale PWM a 100KHz di frequenza di commutazione con duty cycle 50% su cui basare una modulazione in back-scattering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The successful, efficient, and safe turbine design requires a thorough understanding of the underlying physical phenomena. This research investigates the physical understanding and parameters highly correlated to flutter, an aeroelastic instability prevalent among low pressure turbine (LPT) blades in both aircraft engines and power turbines. The modern way of determining whether a certain cascade of LPT blades is susceptible to flutter is through time-expensive computational fluid dynamics (CFD) codes. These codes converge to solution satisfying the Eulerian conservation equations subject to the boundary conditions of a nodal domain consisting fluid and solid wall particles. Most detailed CFD codes are accompanied by cryptic turbulence models, meticulous grid constructions, and elegant boundary condition enforcements all with one goal in mind: determine the sign (and therefore stability) of the aerodynamic damping. The main question being asked by the aeroelastician, ``is it positive or negative?'' This type of thought-process eventually gives rise to a black-box effect, leaving physical understanding behind. Therefore, the first part of this research aims to understand and reveal the physics behind LPT flutter in addition to several related topics including acoustic resonance effects. A percentage of this initial numerical investigation is completed using an influence coefficient approach to study the variation the work-per-cycle contributions of neighboring cascade blades to a reference airfoil. The second part of this research introduces new discoveries regarding the relationship between steady aerodynamic loading and negative aerodynamic damping. Using validated CFD codes as computational wind tunnels, a multitude of low-pressure turbine flutter parameters, such as reduced frequency, mode shape, and interblade phase angle, will be scrutinized across various airfoil geometries and steady operating conditions to reach new design guidelines regarding the influence of steady aerodynamic loading and LPT flutter. Many pressing topics influencing LPT flutter including shocks, their nonlinearity, and three-dimensionality are also addressed along the way. The work is concluded by introducing a useful preliminary design tool that can estimate within seconds the entire aerodynamic damping versus nodal diameter curve for a given three-dimensional cascade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light rainfall is the baseline input to the annual water budget in mountainous landscapes through the tropics and at mid-latitudes. In the Southern Appalachians, the contribution from light rainfall ranges from 50-60% during wet years to 80-90% during dry years, with convective activity and tropical cyclone input providing most of the interannual variability. The Southern Appalachians is a region characterized by rich biodiversity that is vulnerable to land use/land cover changes due to its proximity to a rapidly growing population. Persistent near surface moisture and associated microclimates observed in this region has been well documented since the colonization of the area in terms of species health, fire frequency, and overall biodiversity. The overarching objective of this research is to elucidate the microphysics of light rainfall and the dynamics of low level moisture in the inner region of the Southern Appalachians during the warm season, with a focus on orographically mediated processes. The overarching research hypothesis is that physical processes leading to and governing the life cycle of orographic fog, low level clouds, and precipitation, and their interactions, are strongly tied to landform, land cover, and the diurnal cycles of flow patterns, radiative forcing, and surface fluxes at the ridge-valley scale. The following science questions will be addressed specifically: 1) How do orographic clouds and fog affect the hydrometeorological regime from event to annual scale and as a function of terrain characteristics and land cover?; 2) What are the source areas, governing processes, and relevant time-scales of near surface moisture convergence patterns in the region?; and 3) What are the four dimensional microphysical and dynamical characteristics, including variability and controlling factors and processes, of fog and light rainfall? The research was conducted with two major components: 1) ground-based high-quality observations using multi-sensor platforms and 2) interpretive numerical modeling guided by the analysis of the in situ data collection. Findings illuminate a high level of spatial – down to the ridge scale - and temporal – from event to annual scale - heterogeneity in observations, and a significant impact on the hydrological regime as a result of seeder-feeder interactions among fog, low level clouds, and stratiform rainfall that enhance coalescence efficiency and lead to significantly higher rainfall rates at the land surface. Specifically, results show that enhancement of an event up to one order of magnitude in short-term accumulation can occur as a result of concurrent fog presence. Results also show that events are modulated strongly by terrain characteristics including elevation, slope, geometry, and land cover. These factors produce interactions between highly localized flows and gradients of temperature and moisture with larger scale circulations. Resulting observations of DSD and rainfall patterns are stratified by region and altitude and exhibit clear diurnal and seasonal cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eyewall replacement cycle (ERC) is frequently observed during the evolution of intensifying Tropical Cyclones (TCs). Although intensely studied in recent years, the underlying mechanisms of ERC are still poorly understood, and the forecast of ERC remains a great challenge. To advance our understanding of ERC and provide insights in improvement of numerical forecast of ERC, a series of numerical simulations is performed to investigate ERCs in TC-like vortices on a f-plane. The simulated ERCs possess key features similar to those observed in real TCs including the formation of a secondary tangential wind maximum associated with the outer eyewall. The Sawyer-Eliassen equation and tangential momentum budget analyses are performed to diagnose the mechanisms underlying the secondary eyewall formation (SEF) and ERC. Our diagnoses reveal crucial roles of outer rainband heating in governing the formation and development of the secondary tangential wind maximum and demonstrate that the outer rainband convection must reach a critical strength relative to the eyewall before SEF and the subsequent ERC can occur. A positive feedback among low-level convection, acceleration of tangential winds in the boundary layer, and surface evaporation that leads to the development of ERC and a mechanism for the demise of inner eyewall that involves interaction between the transverse circulations induced by eyewall and outer rainband convection are proposed. The tangential momentum budget indicates that the net tendency of tangential wind is a small residual resultant from a large cancellation between tendencies induced by the resolved and sub-grid scale (SGS) processes. The large SGS contribution to the tangential wind budget explains different characteristics of ERC shown in previous numerical studies and poses a great challenge for a timely correct forecast of ERC. The sensitivity experiments show that ERCs are strongly subjected to model physics, vortex radial structure and background wind. The impact of model physics on ERC can be well understood with the interaction among eyewall/outer rainband heating, radilal inflow in the boundary layer, surface layer turbulent processes, and shallow convection in the moat. However, further investigations are needed to fully understand the exhibited sensitivities of ERC to vortex radial structure and background wind.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of ocean acidification on the life-cycle stages of the coccolithophore Emiliania huxleyi and their by light were examined. Calcifying diploid and noncalcifying haploid cells (Roscoff culture collection 1216 and 1217) were acclimated to present-day and elevated CO2 partial pressures (PCO2; 38.5 vs. 101.3 Pa, ., 380 vs. 1000 matm) under low and high light (50 vs. 300 mmol photons m-2 s-1). Growth rates as well as quotas and production rates of C and N were measured. Sources of inorganic C for biomass buildup were using a 14C disequilibrium assay. Photosynthetic O2 evolution was measured as a function of dissolved inorganic C and light by means of membrane-inlet mass spectrometry. The diploid stage responded to elevated PCO2 by shunting resources from the production of particulate inorganic C toward organic C yet keeping the production of total particulate C constant. As the effect of ocean acidification was stronger under low light, the diploid stage might be less affected by increased acidity when energy availability is high. The haploid stage maintained elemental composition and production rates under elevated PCO2. Although both life-cycle stages involve different ways of dealing with elevated PCO2, the responses were generally modulated by energy availability, being typically most pronounced under low light. Additionally, PCO2 responses resembled those induced by high irradiances, indicating that ocean acidification affects the interplay between energy-generating processes (photosynthetic light reactions) and processes competing for energy (biomass buildup and calcification). A conceptual model is put forward explaining why the magnitude of single responses is determined by energy availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The endothelium is the inner most layer of cells that lines all arteries. A primary function of endothelial cells is to regulate responses to increased blood flow and the resulting frictional forces or shear stress by producing factors such as nitric oxide that mediate arterial dilation (flow mediated dilation (FMD)). Menstrual cycle variations in estrogen (E2) have been shown to influence brachial artery (BA) FMD in response to transient increases in shear stress brought about by the release of a brief forearm occlusion (reactive hyperemia (RH)). FMD can also be assessed in response to a sustained shear stress stimulus such as that created with handgrip exercise (HGEX), and studies have shown that RH- and HGEX stimulated FMD provide unique information regarding endothelial function. However, the impact of menstrual phase on HGEX-FMD is unknown. Therefore, the purpose of this study was to determine the impact of cyclical changes in E2 levels on HGEX-FMD over two discrete phases of the menstrual cycle. FMD was assessed via ultrasound. 12 subjects (21 ± 2yrs) completed two experimental visits: (1) low estrogen phase (early follicular) and (2) High estrogen phase (late follicular). In each visit both RH- and HGEX-FMD (6 min handgrip exercise) were assessed. Results are mean ± SD. E2 increased from the low to the high estrogen phase of the menstrual cycle (low: 34 ± 8, high: 161 ± 113pg/mL, p = 0.004). There was no change in mean FMD between phases (RH-FMD: 7.7 ± 4.3% vs. 6.4 ± 3.1%, p = 0.139; HGEX-FMD: 4.8 ± 2.8% vs. 4.8 ± 2.3%, p = 0.979). The observation that both RH- and HGEX-FMD did not differ between phases indicates that menstrual cycle fluctuations in estrogen may not universally impact endothelial function in young, healthy premenopausal women. Further research is needed to improve our understanding of the mechanisms that underlie variability in the impact of menstrual phase on both transient and sustained FMD responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emiliania huxleyi is the most abundant calcifying plankton in modern oceans with substantial intraspecific genome variability and a biphasic life cycle involving sexual alternation between calcified 2N and flagellated 1N cells. We show that high genome content variability in Emiliania relates to erosion of 1N-specific genes and loss of the ability to form flagellated cells. Analysis of 185 E. huxleyi strains isolated from world oceans suggests that loss of flagella occurred independently in lineages inhabiting oligotrophic open oceans over short evolutionary timescales. This environmentally linked physiogenomic change suggests life cycling is not advantageous in very large/diluted populations experiencing low biotic pressure and low ecological variability. Gene loss did not appear to reflect pressure for genome streamlining in oligotrophic oceans as previously observed in picoplankton. Life-cycle modifications might be common in plankton and cause major functional variability to be hidden from traditional taxonomic or molecular markers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emiliania huxleyi is the most abundant calcifying plankton in modern oceans with substantial intraspecific genome variability and a biphasic life cycle involving sexual alternation between calcified 2N and flagellated 1N cells. We show that high genome content variability in Emiliania relates to erosion of 1N-specific genes and loss of the ability to form flagellated cells. Analysis of 185 E. huxleyi strains isolated from world oceans suggests that loss of flagella occurred independently in lineages inhabiting oligotrophic open oceans over short evolutionary timescales. This environmentally linked physiogenomic change suggests life cycling is not advantageous in very large/diluted populations experiencing low biotic pressure and low ecological variability. Gene loss did not appear to reflect pressure for genome streamlining in oligotrophic oceans as previously observed in picoplankton. Life-cycle modifications might be common in plankton and cause major functional variability to be hidden from traditional taxonomic or molecular markers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano-scale touch screen thin film have not been thoroughly investigated in terms of dynamic impact analysis under various strain rates. This research is focused on two different thin films, Zinc Oxide (ZnO) film and Indium Tin Oxide (ITO) film, deposited on Polyethylene Terephthalate (PET) substrate for the standard touch screen panels. Dynamic Mechanical Analysis (DMA) was performed on the ZnO film coated PET substrates. Nano-impact (fatigue) testing was performed on ITO film coated PET substrates. Other analysis includes hardness and the elastic modulus measurements, atomic force microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR) and the Scanning Electron Microscopy (SEM) of the film surface.
Ten delta of DMA is described as the ratio of loss modulus (viscous properties) and storage modulus (elastic properties) of the material and its peak against time identifies the glass transition temperature (Tg). Thus, in essence the Tg recognizes changes from glassy to rubber state of the material and for our sample ZnO film, Tg was found as 388.3 K. The DMA results also showed that the Ten delta curve for Tg increases monotonically in the viscoelastic state (before Tg) and decreases sharply in the rubber state (after Tg) until recrystallization of ZnO takes place. This led to an interpretation that enhanced ductility can be achieved by negating the strength of the material.
For the nano-impact testing using the ITO coated PET, the damage started with the crack initiation and propagation. The interpretation of the nano-impact results depended on the characteristics of the loading history. Under the nano-impact loading, the surface structure of ITO film suffered from several forms of failure damages that range from deformation to catastrophic failures. It is concluded that in such type of application, the films should have low residual stress to prevent deformation, good adhesive strength, durable and good resistance to wear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low-temperature low-pressure hydrogen based plasmas were used to study the influence of processes and discharge conditions on corrosion removal. The capacitive coupled RF discharge in the continuous or pulsed regime was used at operating pressure of 100-200 Pa. Plasma treatment was monitored by optical emission spectroscopy. To be able to study influence of various process parameters, the model corroded samples with and without sandy incrustation were prepared. The SEM-EDX analyzes were carried out to verify corrosion removal efficiency. Experimental conditions were optimized for the selected most frequent materials of original metallic archaeological objects (iron, bronze, copper, and brass). Chlorides removal is based on hydrogen ion reactions while oxides are removed mainly by neutral species interactions. A special focus was kept for the samples temperature because it was necessary to avoid any metallographic changes in the material structure. The application of higher power pulsed regime with low duty cycle seems be the best treatment regime. The low pressure hydrogen plasma is not applicable for objects with a very broken structure or for nonmetallic objects due to the non-uniform heat stress. Due to this fact, the new developed plasmas generated in liquids were applied on selected original archaeological glass materials.