976 resultados para local magnetic field
Resumo:
The high variability of the intensity of suprathermal electron flux in the solar wind is usually ascribed to the high variability of sources on the Sun. Here we demonstrate that a substantial amount of the variability arises from peaks in stream interaction regions, where fast wind runs into slow wind and creates a pressure ridge at the interface. Superposed epoch analysis centered on stream interfaces in 26 interaction regions previously identified in Wind data reveal a twofold increase in 250 eV flux (integrated over pitch angle). Whether the peaks result from the compression there or are solar signatures of the coronal hole boundary, to which interfaces may map, is an open question. Suggestive of the latter, some cases show a displacement between the electron and magnetic field peaks at the interface. Since solar information is transmitted to 1 AU much more quickly by suprathermal electrons compared to convected plasma signatures, the displacement may imply a shift in the coronal hole boundary through transport of open magnetic flux via interchange reconnection. If so, however, the fact that displacements occur in both directions and that the electron and field peaks in the superposed epoch analysis are nearly coincident indicate that any systematic transport expected from differential solar rotation is overwhelmed by a random pattern, possibly owing to transport across a ragged coronal hole boundary.
Resumo:
Measurements of the ionospheric E-region during total solar eclipses have been used to provide information about the evolution of the solar magnetic field and EUV and X-ray emissions from the solar corona and chromosphere. By measuring levels of ionisation during an eclipse and comparing these measurements with an estimate of the unperturbed ionisation levels (such as those made during a control day, where available) it is possible to estimate the percentage of ionising radiation being emitted by the solar corona and chromosphere. Previously unpublished data from the two eclipses presented here are particularly valuable as they provide information that supplements the data published to date. The eclipse of 23 October 1976 over Australia provides information in a data gap that would otherwise have spanned the years 1966 to 1991. The eclipse of 4 December 2002 over Southern Africa is important as it extends the published sequence of measurements. Comparing measurements from eclipses between 1932 and 2002 with the solar magnetic source flux reveals that changes in the solar EUV and X-ray flux lag the open source flux measurements by approximately 1.5 years. We suggest that this unexpected result comes about from changes to the relative size of the limb corona between eclipses, with the lag representing the time taken to populate the coronal field with plasma hot enough to emit the EUV and X-rays ionising our atmosphere.
Resumo:
Fluctuations in the solar wind plasma and magnetic field are well described by the sum of two power law distributions. It has been postulated that these distributions are the result of two independent processes: turbulence, which contributes mainly to the smaller fluctuations, and crossing the boundaries of flux tubes of coronal origin, which dominates the larger variations. In this study we explore the correspondence between changes in the magnetic field with changes in other solar wind properties. Changes in density and temperature may result from either turbulence or coronal structures, whereas changes in composition, such as the alpha-to-proton ratio are unlikely to arise from in-transit effects. Observations spanning the entire ACE dataset are compared with a null hypothesis of no correlation between magnetic field discontinuities and changes in other solar wind parameters. Evidence for coronal structuring is weaker than for in-transit turbulence, with only ∼ 25% of large magnetic field discontinuities associated with a significant change in the alpha-to-proton ratio, compared to ∼ 40% for significant density and temperature changes. However, note that a lack of detectable alpha-to-proton signature is not sufficient to discount a structure as having a solar origin.
Resumo:
The Sun's open magnetic field, magnetic flux dragged out into the heliosphere by the solar wind, varies by approximately a factor of 2 over the solar cycle. We consider the evolution of open solar flux in terms of a source and loss term. Open solar flux creation is likely to proceed at a rate dependent on the rate of photospheric flux emergence, which can be roughly parameterized by sunspot number or coronal mass ejection rate, when available. The open solar flux loss term is more difficult to relate to an observable parameter. The supersonic nature of the solar wind means open solar flux can only be removed by near-Sun magnetic reconnection between open solar magnetic field lines, be they open or closed heliospheric field lines. In this study we reconstruct open solar flux over the last three solar cycles and demonstrate that the loss term may be related to the degree to which the heliospheric current sheet (HCS) is warped, i.e., locally tilted from the solar rotation direction. This can account for both the large dip in open solar flux at the time of sunspot maximum as well as the asymmetry in open solar flux during the rising and declining phases of the solar cycle. The observed cycle-to-cycle variability is also well matched. Following Sheeley et al. (2001), we attribute modulation of open solar flux by the degree of warp of the HCS to the rate at which opposite polarity open solar flux is brought together by differential rotation.
Resumo:
We outline a method to determine the direction of solar open flux transport that results from the opening of magnetic clouds (MCs) by interchange reconnection at the Sun based solely on in-situ observations. This method uses established findings about i) the locations and magnetic polarities of emerging MC footpoints, ii) the hemispheric dependence of the helicity of MCs, and iii) the occurrence of interchange reconnection at the Sun being signaled by uni-directional suprathermal electrons inside MCs. Combining those observational facts in a statistical analysis of MCs during solar cycle 23 (period 1995 – 2007), we show that the time of disappearance of the northern polar coronal hole (1998 – 1999), permeated by an outward-pointing magnetic field, is associated with a peak in the number of MCs originating from the northern hemisphere and connected to the Sun by outward-pointing magnetic field lines. A similar peak is observed in the number of MCs originating from the southern hemisphere and connected to the Sun by inward-pointing magnetic field lines. This pattern is interpreted as the result of interchange reconnection occurring between MCs and the open field lines of nearby polar coronal holes. This reconnection process closes down polar coronal hole open field lines and transports these open field lines equatorward, thus contributing to the global coronal magnetic field reversal process. These results will be further constrainable with the rising phase of solar cycle 24.
Resumo:
Interchange reconnection at the Sun, that is, reconnection between a doubly-connected field loop and singly-connected or open field line that extends to infinity, has important implications for the heliospheric magnetic flux budget. Recent work on the topic is reviewed, with emphasis on two aspects. The first is a possible heliospheric signature of interchange reconnection at the coronal hole boundary, where open fields meet closed loops. The second aspect concerns the means by which the heliospheric magnetic field strength reached record-lows during the recent solar minimum period. A new implication of this work is that interchange reconnection may be responsible for the puzzling, occasional coincidence of the heliospheric current sheet and the interface between fast and slow flow in the solar wind.
Resumo:
This paper explores a novel tactile human-machine interface based on the controlled stimulation of mechanoreceptors by a subdermal magnetic implant manipulated through an external electromagnet. The selection of a suitable implant magnet and implant site is discussed and an external interface for manipulating the implant is described. The paper also reports on the basic properties of such an interface, including magnetic field strength sensitivity and frequency sensitivity obtained through experimentation on two participants. Finally, the paper presents two practical application scenarios for the interface.
Resumo:
Using the record of 30 flank eruptions over the last 110 years at Nyamuragira, we have tested the relationship between the eruption dynamics and the local stress field. There are two groups of eruptions based on their duration (< 80days >) that are also clustered in space and time. We find that the eruptions fed by dykes parallel to the East African Rift Valley have longer durations (and larger volumes) than those eruptions fed by dykes with other orientations. This is compatible with a model for compressible magma transported through an elastic-walled dyke in a differential stress field from an over-pressured reservoir (Woods et al., 2006). The observed pattern of eruptive fissures is consistent with a local stress field modified by a northwest-trending, right lateral slip fault that is part of the northern transfer zone of the Kivu Basin rift segment. We have also re-tested with new data the stochastic eruption models for Nyamuragira of Burt et al. (1994). The time-predictable, pressure-threshold model remains the best fit and is consistent with the typically observed declining rate of sulphur dioxide emission during the first few days of eruption with lava emission from a depressurising, closed, crustal reservoir. The 2.4-fold increase in long-term eruption rate that occurred after 1977 is confirmed in the new analysis. Since that change, the record has been dominated by short-duration eruptions fed by dykes perpendicular to the Rift. We suggest that the intrusion of a major dyke during the 1977 volcano-tectonic event at neighbouring Nyiragongo volcano inhibited subsequent dyke formation on the southern flanks of Nyamuragira and this may also have resulted in more dykes reaching the surface elsewhere. Thus that sudden change in output was a result of a changed stress field that forced more of the deep magma supply to the surface. Another volcano-tectonic event in 2002 may also have changed the magma output rate at Nyamuragira.
Resumo:
In this paper we explore classification techniques for ill-posed problems. Two classes are linearly separable in some Hilbert space X if they can be separated by a hyperplane. We investigate stable separability, i.e. the case where we have a positive distance between two separating hyperplanes. When the data in the space Y is generated by a compact operator A applied to the system states ∈ X, we will show that in general we do not obtain stable separability in Y even if the problem in X is stably separable. In particular, we show this for the case where a nonlinear classification is generated from a non-convergent family of linear classes in X. We apply our results to the problem of quality control of fuel cells where we classify fuel cells according to their efficiency. We can potentially classify a fuel cell using either some external measured magnetic field or some internal current. However we cannot measure the current directly since we cannot access the fuel cell in operation. The first possibility is to apply discrimination techniques directly to the measured magnetic fields. The second approach first reconstructs currents and then carries out the classification on the current distributions. We show that both approaches need regularization and that the regularized classifications are not equivalent in general. Finally, we investigate a widely used linear classification algorithm Fisher's linear discriminant with respect to its ill-posedness when applied to data generated via a compact integral operator. We show that the method cannot stay stable when the number of measurement points becomes large.
Resumo:
The development of global magnetospheric models, such as Space Weather Modeling Framework (SWMF), which can accurately reproduce and track space weather processes has high practical utility. We present an interval on 5 June 1998, where the location of the polar cap boundary, or open-closed field line boundary (OCB), can be determined in the ionosphere using a combination of instruments during a period encompassing a sharp northward to southward interplanetary field turning. We present both point- and time-varying comparisons of the observed and simulated boundaries in the ionosphere and find that when using solely the coupled ideal magnetohydrodynamic magnetosphere-ionosphere model, the rate of change of the OCB to a southward turning of the interplanetary field is significantly faster than that computed from the observational data. However, when the inner magnetospheric module is incorporated, the modeling framework both qualitatively, and often quantitatively, reproduces many elements of the studied interval prior to an observed substorm onset. This result demonstrates that the physics of the inner magnetosphere is critical in shaping the boundary between open and closed field lines during periods of southward interplanetary magnetic field (IMF) and provides significant insight into the 3-D time-dependent behavior of the Earth's magnetosphere in response to a northward-southward IMF turning. We assert that during periods that do not include the tens of minutes surrounding substorm expansion phase onset, the coupled SWMF model may provide a valuable and reliable tool for estimating both the OCB and magnetic field topology over a wide range of latitudes and local times.
Resumo:
Despite the characterization of the auroral substorm more than 40 years ago, controversy still surrounds the processes triggering substorm onset initiation. That stretching of the Earth's magnetotail following the addition of new nightside magnetic flux from dayside reconnection powers the substorm is well understood; the trigger for explosive energy release at substorm expansion phase onset is not. Using ground-based data sets with unprecedented combined spatial and temporal coverage, we report the discovery of new localized and contemporaneous magnetic wave and small azimuthal scale auroral signature of substorm onset. These local auroral arc undulations and magnetic field signatures rapidly evolve on second time scales for several minutes in advance of the release of the auroral surge. We also present evidence from a conjugate geosynchronous satellite of the concurrent magnetic onset in space as the onset of magnetic pulsations in the ionosphere, to within technique error. Throughout this time period, the more poleward arcs that correspond to the auroral oval which maps to the central plasma sheet remain undisturbed. There is good evidence that flows from the midtail crossing the plasma sheet can generate north-south auroral structures, yet no such auroral forms are seen in this event. Our observations present a severe challenge to the standard hypothesis that magnetic reconnection in stretched magnetotail fields triggers onset, indicating substorm expansion phase initiation occurs on field lines that are close to the Earth, as bounded by observations at geosynchronous orbit and in the conjugate ionosphere.
Resumo:
Bees provide essential pollination services that are potentially affected both by local farm management and the surrounding landscape. To better understand these different factors, we modelled the relative effects of landscape composition (nesting and floral resources within foraging distances), landscape configuration (patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional and local-scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes comprising more high-quality habitats; bee richness on conventional fields with low diversity benefited most from high-quality surrounding land cover. Landscape configuration effects were weak. Bee responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both the maintenance of high-quality habitats around farms and on local management practices that may offset impacts of intensive monoculture agriculture.
Resumo:
Historic geomagnetic activity observations have been used to reveal centennial variations in the open solar flux and the near-Earth heliospheric conditions (the interplanetary magnetic field and the solar wind speed). The various methods are in very good agreement for the past 135 years when there were sufficient reliable magnetic observatories in operation to eliminate problems due to site-specific errors and calibration drifts. This review underlines the physical principles that allow these reconstructions to be made, as well as the details of the various algorithms employed and the results obtained. Discussion is included of: the importance of the averaging timescale; the key differences between “range” and “interdiurnal variability” geomagnetic data; the need to distinguish source field sector structure from heliospherically-imposed field structure; the importance of ensuring that regressions used are statistically robust; and uncertainty analysis. The reconstructions are exceedingly useful as they provide calibration between the in-situ spacecraft measurements from the past five decades and the millennial records of heliospheric behaviour deduced from measured abundances of cosmogenic radionuclides found in terrestrial reservoirs. Continuity of open solar flux, using sunspot number to quantify the emergence rate, is the basis of a number of models that have been very successful in reproducing the variation derived from geomagnetic activity. These models allow us to extend the reconstructions back to before the development of the magnetometer and to cover the Maunder minimum. Allied to the radionuclide data, the models are revealing much about how the Sun and heliosphere behaved outside of grand solar maxima and are providing a means of predicting how solar activity is likely to evolve now that the recent grand maximum (that had prevailed throughout the space age) has come to an end.
Resumo:
We show that the observed K velocities and periodicities of AM CVn can be reconciled given a mass ratio q~0.22 and a secondary star with a modest magnetic field of surface strength B~1 T. We see that the new mass ratio implies that the secondary is most likely semidegenerate. The effect of the field on the accretion disc structure is examined. The theory of precessing discs and resonant orbits is generalized to encompass higher order resonances than 3:2 and shown to retain consistency with the new mass ratio.
Resumo:
The work involves investigation of a type of wireless power system wherein its analysis will yield the construction of a prototype modeled as a singular technological artifact. It is through exploration of the artifact that forms the intellectual basis for not only its prototypical forms, but suggestive of variant forms not yet discovered. Through the process it is greatly clarified the role of the artifact, its most suitable application given the constraints on the delivery problem, and optimization strategies to improve it. In order to improve maturity and contribute to a body of knowledge, this document proposes research utilizing mid-field region, efficient inductive-transfer for the purposes of removing wired connections and electrical contacts. While the description seems enough to state the purpose of this work, it does not convey the compromises of having to redraw the lines of demarcation between near and far-field in the traditional method of broadcasting. Two striking scenarios are addressed in this thesis: Firstly, the mathematical explanation of wireless power is due to J.C. Maxwell's original equations, secondly, the behavior of wireless power in the circuit is due to Joseph Larmor's fundamental works on the dynamics of the field concept. A model of propagation will be presented which matches observations in experiments. A modified model of the dipole will be presented to address the phenomena observed in the theory and experiments. Two distinct sets of experiments will test the concept of single and two coupled-modes. In a more esoteric context of the zero and first-order magnetic field, the suggestion of a third coupled-mode is presented. Through the remaking of wireless power in this context, it is the intention of the author to show the reader that those things lost to history, bound to a path of complete obscurity, are once again innovative and useful ideas.