980 resultados para leg exercise
Resumo:
Mitochondrial impairment is hypothesized to contribute to the pathogenesis of insulin resistance. Mitofusin (Mfn) proteins regulate the biogenesis and maintenance of the mitochondrial network, and when inactivated, cause a failure in the mitochondrial architecture and decreases in oxidative capacity and glucose oxidation. Exercise increases muscle mitochondrial content, size, oxidative capacity and aerobic glucose oxidation. To address if Mfn proteins are implicated in these exercise-induced responses, we measured Mfn1 and Mfn2 mRNA levels, pre-, post-, 2 and 24 h post-exercise. Additionally, we measured the expression levels of transcriptional regulators that control mitochondrial biogenesis and functions, including PGC-1alpha, NRF-1, NRF-2 and the recently implicated ERRalpha. We show that Mfn1, Mfn2, NRF-2 and COX IV mRNA were increased 24 h post-exercise, while PGC-1alpha and ERRalpha mRNA increased 2 h post-exercise. Finally, using in vitro cellular assays, we demonstrate that Mfn2 gene expression is driven by a PGC-1alpha programme dependent on ERRalpha. The PGC-1alpha/ERRalpha-mediated induction of Mfn2 suggests a role of these two factors in mitochondrial fusion. Our results provide evidence that PGC-1alpha not only mediates the increased expression of oxidative phosphorylation genes but also mediates alterations in mitochondrial architecture in response to aerobic exercise in humans
Resumo:
Platelet free cytosolic calcium (PFCC) was measured in 21 healthy volunteers before and after cigarette smoking or physical exercise. The aim was to investigate whether acute blood pressure changes and increases in circulating levels of catecholamines and vasopressin modify PFCC. PFCC was determined using the Quin-2 method. Following cigarette smoking, significant increases in blood pressure, heart rate, plasma epinephrine (35 +/- 18 pg/ml before versus 51 +/- 31 pg/ml after smoking, P less than 0.05, mean +/- s.d.) and vasopressin levels (0.8 +/- 0.3 pg/ml before and 4.2 +/- 4.1 pg/ml after smoking, P less than 0.001) were observed. However, despite these acute hormonal and hemodynamic changes, PFCC remained stable at 156 +/- 55 nmol/l prior to the study and 157 +/- 29 nmol/l and 156 +/- 38 nmol/l at 20 and 80 min post-smoking, respectively. Acute physical exercise led to an increase in heart rate and systolic blood pressure but to a decrease in diastolic pressure. Moreover, a marked increase in plasma norepinephrine levels was observed after exercise (213 +/- 71 pg/ml before versus 747 +/- 501 pg/ml after exercise, P +/- 0.001). Again, PFCC was stable at 185 +/- 56 nmol/l at baseline versus 188 +/- 51 nmol/l at 20 min and 155 +/- 26 nmol/l at 80 min after exercise. These results therefore demonstrate that PFCC is not influenced acutely either by blood pressure increases, or by elevations in circulating catecholamine and vasopressin concentrations.
Resumo:
RESUMEDurant la phase de récupération d'un exercice de course à pied d'intensité maximale ou submaximale, une augmentation de la pression artérielle systolique centrale (aortique) résultant de la réflexion des ondes de pouls sur l'arbre vasculaire est constatée chez l'individu en bonne santé. En diastole cependant, l'impact de la réflexion de ces ondes de pouls sur la pression centrale demeure inconnu durant la récupération d'un exercice.Nous avons évalué les ondes de pouls centrales systolique et diastolique chez onze athlètes d'endurance durant la phase de récupération d'un exercice de course à pied dans des conditions d'effort maximal (sur tapis de course) et lors d'un effort submaximal lors d'une course à pied de 4000 mètres en plein air sur terrain mixte.Pour chaque sujet et lors des deux exercices, l'onde de pouls a été mesurée au niveau radial par tonométrie d'aplanation durant une phase de repos précédant l'exercice, puis à 5, 15, 25, 35 et 45 minutes après la fin de l'exercice. En utilisant une fonction mathématique de transfert, l'onde de pouls centrale a été extrapolée à partir de l'onde de pouls radiale. En compilant la forme de l'onde de pouls centrale avec une mesure simultanée de la pression artérielle brachiale, un index d'augmentation de l'onde de pouls en systole (Alx) et en diastole (Als) peut être calculé, reflétant l'augmentation des pressions résultant de la réflexion des ondes sur l'arbre vasculaire périphérique.A 5 minutes de la fin de l'exercice, les deux index ont été mesurés moindres que ceux mesurés lors de la phase précédant celui-ci. Lors des mesures suivantes, Alx est resté bas, alors que Aid a progressivement augmenté pour finalement dépasser la valeur de repos après 45 minutes de récupération. Le même phénomène a été constaté pour les deux modalités d'exercice (maximal ou submaximal). Ainsi, au-delà de quelques minutes de récupération après un exercice de course d'intensité maximale ou submaximale, nous avons montré par ces investigations que les ondes de pouls réfléchies en périphérie augmentent de façon sélective la pression centrale en diastole chez l'athlète d'endurance.ABSTRACTDuring recovery from a maximal or submaximal aerobic exercise, augmentation of central (aortic) systolic pressure by reflected pressure waves is blunted in healthy humans. However, the extent to which reflected pressure waves modify the central pulse in diastole in these conditions remains unknown. We evaluated systolic and diastolic central reflected waves in 11 endurance-trained athletes on recovery from a maximal running test on a treadmill (treadmill-max) and a 4000m run in field conditions. On both occasions in each subject, the radial pulse was recorded with applanation tonometry in the resting preexercise state and then 5, 15, 25, 35, and 45 minutes after exercise termination. From the central waveform, as reconstructed by application of a generalized transfer function, we computed a systolic (Alx) and a diastolic index (Aid) of pressure augmentation by reflections. At 5 minutes, both indices were below preexercise. At further time-points, Alx remained low, while Aid progressively increased, to overshoot above preexercise at 45 minutes. The same behavior was observed with both exercise types. Beyond the first few minutes of recovery following either maximal or submaximal aerobic exercise, reflected waves selectively augment the central pressure pulse in diastole, at least in endurance- trained athletes.
Resumo:
ABSTRACT: Ultramarathons comprise any sporting event involving running longer than the traditional marathon length of 42.195 km (26.2 miles). Studies on ultramarathon participants can investigate the acute consequences of ultra-endurance exercise on inflammation and cardiovascular or renal consequences, as well as endocrine/energetic aspects, and examine the tissue recovery process over several days of extreme physical load. In a study published in BMC Medicine, Schütz et al. followed 44 ultramarathon runners over 4,487 km from South Italy to North Cape, Norway (the Trans Europe Foot Race 2009) and recorded daily sets of data from magnetic resonance imaging, psychometric, body composition and biological measurements. The findings will allow us to better understand the timecourse of degeneration/regeneration of some lower leg tissues such as knee joint cartilage, to differentiate running-induced from age-induced pathologies (for example, retropatelar arthritis) and finally to assess the interindividual susceptibility to injuries. Moreover, it will also provide new information about the complex interplay between cerebral adaptations/alterations and hormonal influences resulting from endurance exercise and provide data on the dose-response relationship between exercise and brain structure/function. Overall, this study represents a unique attempt to investigate the limits of the adaptive response of human bodies.Please see related article: http://www.biomedcentral.com/1741-7015/10/78.
Resumo:
PURPOSE: Currently, many pre-conditions are regarded as relative or absolute contraindications for lumbar total disc replacement (TDR). Radiculopathy is one among them. In Switzerland it is left to the surgeon's discretion when to operate if he adheres to a list of pre-defined indications. Contraindications, however, are less clearly specified. We hypothesized that, the extent of pre-operative radiculopathy results in different benefits for patients treated with mono-segmental lumbar TDR. We used patient perceived leg pain and its correlation with physician recorded radiculopathy for creating the patient groups to be compared. METHODS: The present study is based on the dataset of SWISSspine, a government mandated health technology assessment registry. Between March 2005 and April 2009, 577 patients underwent either mono- or bi-segmental lumbar TDR, which was documented in a prospective observational multicenter mode. A total of 416 cases with a mono-segmental procedure were included in the study. The data collection consisted of pre-operative and follow-up data (physician based) and clinical outcomes (NASS form, EQ-5D). A receiver operating characteristic (ROC) analysis was conducted with patients' self-indicated leg pain and the surgeon-based diagnosis "radiculopathy", as marked on the case report forms. As a result, patients were divided into two groups according to the severity of leg pain. The two groups were compared with regard to the pre-operative patient characteristics and pre- and post-operative pain on Visual Analogue Scale (VAS) and quality of life using general linear modeling. RESULTS: The optimal ROC model revealed a leg pain threshold of 40 ≤ VAS > 40 for the absence or the presence of "radiculopathy". Demographics in the resulting two groups were well comparable. Applying this threshold, the mean pre-operative leg pain level was 16.5 points in group 1 and 68.1 points in group 2 (p < 0.001). Back pain levels differed less with 63.6 points in group 1 and 72.6 in group 2 (p < 0.001). Pre-operative quality of life showed considerable differences with an 0.44 EQ-5D score in group 1 and 0.29 in group 2 (p < 0.001, possible score range -0.6 to 1). At a mean follow-up time of 8 months, group 1 showed a mean leg pain improvement of 3.6 points and group 2 of 41.1 points (p < 0.001). Back pain relief was 35.6 and 39.1 points, respectively (p = 0.27). EQ-5D score improvement was 0.27 in group 1 and 0.41 in group 2 (p = 0.11). CONCLUSIONS: Patients labeled as having radiculopathy (group 2) do mostly have pre-operative leg pain levels ≥ 40. Applying this threshold, the patients with pre-operative leg pain do also have more severe back pain and a considerably lower quality of life. Their net benefit from the lumbar TDR is higher and they do have similar post-operative back and leg pain levels as well as the quality of life as patients without pre-operative leg pain. Although randomized controlled trials are required to confirm these findings, they put leg pain and radiculopathy into perspective as absolute contraindications for TDR.
Resumo:
Ideally, reconstruction of lower extremity soft tissue defects includes not only an esthetically pleasing 3-dimensional shape and solid anchoring to the underlying structures to resist shear forces, but should also address the restoration of sensation. Therefore, we present a prospective study on defect reconstruction of the lower leg and ankle to evaluate the role of sensate free fasciocutaneous lateral arm flap and the impact of sensory nerve reconstruction. Thirty patients were allocated randomly to the study group (n = 15) that obtained end-to-side sensate coaptation using the lower lateral cutaneous brachial nerve to the tibial nerve using the epineural window technique, or to the control group reconstructed without nerve coaptation. At 1-year follow-up the patients were evaluated for pain sensation, thermal sensibility, static and moving 2-point discrimination, and Semmes-Weinstein monofilament tests. Data from both groups were compared and statistically analyzed with the Mann-Whitney U test and the Fisher exact test. Flaps of the study group reached a static and moving 2-point discrimination and Semmes-Weinstein monofilament tests nearly equal to the contralateral leg area and significantly better than flaps of the control group. Donor damage morbidity of the tibial nerve did not occur. To our point of view resensation should be carried out by end-to-side neurorrhaphy to the tibial nerve because of the superior restoration of sensibility.
Resumo:
OBJECTIVES: To determine the distribution of exercise stages of change in a rheumatoid arthritis (RA) cohort, and to examine patients' perceptions of exercise benefits, barriers, and their preferences for exercise. METHODS: One hundred and twenty RA patients who attended the Rheumatology Unit of a University Hospital were asked to participate in the study. Those who agreed were administered a questionnaire to determine their exercise stage of change, their perceived benefits and barriers to exercise, and their preferences for various features of exercise. RESULTS: Eighty-nine (74%) patients were finally included in the analyses. Their mean age was 58.4 years, mean RA duration 10.1 years, and mean disease activity score 2.8. The distribution of exercise stages of change was as follows: precontemplation (n = 30, 34%), contemplation (n = 11, 13%), preparation (n = 5, 6%), action (n = 2, 2%), and maintenance (n = 39, 45%). Compared to patients in the maintenance stage of change, precontemplators exhibited different demographic and functional characteristics and reported less exercise benefits and more barriers to exercise. Most participants preferred exercising alone (40%), at home (29%), at a moderate intensity (64%), with advice provided by a rheumatologist (34%) or a specialist in exercise and RA (34%). Walking was by far the preferred type of exercise, in both the summer (86%) and the winter (51%). CONCLUSIONS: Our cohort of patients with RA was essentially distributed across the precontemplation and maintenance exercise stages of change. These subgroups of patients exhibit psychological and functional differences that make their needs different in terms of exercise counselling.
Resumo:
The magnitude of thermogenesis induced by a test meal (17% protein, 54% CHO, and 29% fat) was assessed using indirect calorimetry in six obese women before and after weight loss (mean loss: 11.2 kg) and compared with six nonobese matched controls at rest for 5 h and during and following graded moderate exercise on a bicycle ergometer at three workloads. The test meal contained 60% of the energy expended in basal state over 24 h (736-1020 kcal/meal according to the group). In obese subjects the net absolute increase in energy expenditure (delta EE) in response to the meal was similar between exercising and resting conditions (delta EE = 0.27 vs 0.32 kcal/min, respectively) but tended to be lower in obese women after weight loss (delta EE = 0.19 kcal/min while exercising and 0.25 kcal/min while resting, p less than 0.05) and in control subjects (delta EE = 0.16 vs. 0.25 kcal/min, respectively: p less than 0.05). These results show that the thermogenic response to a meal is not potentiated by moderate exercise.
Resumo:
During ODP Leg 123, abundant and well-preserved Neocomian radiolarians were recovered at Site 765 (Argo Abyssal Plain) and Site 766 (lower Exmouth Plateau). Assemblages are characterized by the numerical dominance of a small number of non-tethyan forms and by the scarcity of tethyan taxa. Remarkable contrasts exist between radiolarian assemblages extracted from claystones of Site 765 and reexamined DSDP Site 26 1, and faunas recovered from radiolarian sand layers, only found at Site 765. Clay faunas are unusual in their low diversity of apparently ecologically tolerant (or solution resistant?), ubiquist species, whereas sand faunas are dominated by non-tethyan taxa. Comparisons with Sites 766 and 26 1, as well as sedimentological observations, lead to the conclusion that this faunal contrast resulted from a difference in provenance, rather than from hydraulic sorting or selective dissolution. The ranges of 27 tethyan taxa from Site 765 were compared to the tethyan radiolarian zonation by Jud (1992) by means of the Unitary Associations Method. This calculation allows to directly date the Site 765 assemblages and to estimate the amount of truncation of ranges for tethyan taxa. Over 70% of the already few tethyan species of Site 765, have truncated ranges during the Valanginian-Hauterivian. Radiolarian assemblages recovered from claystones at Sites 765 and 261 in the Argo Basin apparently reflect restricted oceanic conditions during the latest Jurassic-Barremian. Neither sedimentary facies nor faunal associations bear any resemblance to what we know from typical tethyan sequences. We conclude that the Argo Basin was paleoceanographically separated from the Tethys during the Late Jurassic and part of the Early Cretaceous by its position at higher paleolatitudes and/or by enclosing land masses. Assemblages recovered from radiolarian sand layers are dominated by non-tethyan species that are interpreted as circumantarctic. Their first appearance in the late Berriasian-early Valanginian predates the oceanization of the Indo-Australian breakup (M11, late Valanginian), but coincides with a sharp increase in margin-derived pelagic turbidites. The Indo-Australian rift zone and the adjacent margins must have been submerged deeply enough to allow an intermittent influx of circumantarctic cold water into the Argo Basin, creating increased bottom current activity. Cold-water radiolarians carried into the Argo Basin upwelled along the margin, died, and accumulated in radiolarite layers due to winnowing by bottom currents. High rates of faunal change and the sharp increase of bottom current activity are thought to be synchronous with possible pronounced late Berriasian-early Valanginian lowstands in sea level. Hypothetically, both phenomena might have been.caused by a tendency to glaciation on the Antarctic-Australian continent, which was for the first time isolated from the rest of Gondwana by oceanic seaways as a result of Jurassic-Early Cretaceous sea-floor spreading. The absence of most typical tethyan radiolarian species during the Valanginian-Hauterivian is interpreted as reflecting a time of strong influx of circumantarctic cold water following oceanization (M11) and rapid spreading between Southeast India and West Australia. The reappearance and gradual abundance/diversity increase of tethyan taxa, along with the still dominant circumantarctic species are thought to result from overall more equitable climatic conditions during the Barremian-early Aptian and from the establishment of an oceanic connection with the Tethys Ocean during the early Aptian.
Resumo:
Adequate supply of oxygen to the brain is critical for maintaining normal brain function. Severe hypoxia, such as that experienced during high altitude ascent, presents a unique challenge to brain oxygen (O2) supply. During high-intensity exercise, hyperventilation-induced hypocapnia leads to cerebral vasoconstriction, followed by reductions in cerebral blood flow (CBF), oxygen delivery (DO2), and tissue oxygenation. This reduced O2 supply to the brain could potentially account for the reduced performance typically observed during exercise in severe hypoxic conditions. The aims of this thesis were to document the effect of acute and chronic exposure to hypoxia on CBF control, and to determine the role of cerebral DO2 and tissue oxygenation in limiting performance during exercise in severe hypoxia. We assessed CBF, arterial O2 content (CaO2), haemoglobin concentration ([Hb]), partial pressure of arterial O2 (PaO2), cerebrovascular CO2 reactivity, ventilatory response to CO2, cerebral autoregulation (CA), and estimated cerebral DO2 (CBF ⨉ CaO2) at sea level (SL), upon ascent to 5,260 m (ALT1), and following 16 days of acclimatisation to 5,260 m (ALT16). We found an increase in CBF despite an elevated cerebrovascular CO2 reactivity at ALT1, which coincided with a reduced CA. Meanwhile, PaO2 was greatly decreased despite increased ventilatory drive at ALT1, resulting in a concomitant decrease in CaO2. At ALT16, CBF decreased towards SL values, while cerebrovascular CO2 reactivity and ventilatory drive were further elevated. Acclimatisation increased PaO2, [Hb], and therefore CaO2 at ALT16, but these changes did not improve CA compared to ALT1. No differences were observed in cerebral DO2 across SL, ALT1, and ALT16. Our findings demonstrate that cerebral DO2 is maintained during both acute and chronic exposure to 5,260 m, due to the reciprocal changes in CBF and CaO2. We measured middle cerebral artery velocity (MCAv: index of CBF), cerebral DO2, ventilation (VE), and performance during incremental cycling to exhaustion and 15km time trial cycling in both normoxia and severe hypoxia (11% O2, normobaric), with and without added CO2 to the inspirate (CO2 breathing). We found MCAv was higher during exercise in severe hypoxia compared in normoxia, while cerebral tissue oxygenation and DO2 were reduced. CO2 breathing was effective in preventing the development of hyperventilation-induced hypocapnia during intense exercise in both normoxia and hypoxia. As a result, we were able to increase both MCAv and cerebral DO2 during exercise in hypoxia with our CO2 breathing setup. However, we concomitantly increased VE and PaO2 (and presumably respiratory work) due to the increased hypercapnic stimuli with CO2 breathing, which subsequently contributed to the cerebral DO2 increase during hypoxic exercise. While we effectively restored cerebral DO2 during exercise in hypoxia to normoxic values with CO2 breathing, we did not observe any improvement in cerebral tissue oxygenation or exercise performance. Accordingly, our findings do not support the role of reduced cerebral DO2 in limiting exercise performance in severe hypoxia. -- Un apport adéquat en oxygène au niveau du cerveau est primordial pour le maintien des fonctions cérébrales normales. L'hypoxie sévère, telle qu'expérimentée au cours d'ascensions en haute altitude, présente un défi unique pour l'apport cérébral en oxygène (O2). Lors d'exercices à haute intensité, l'hypocapnie induite par l'hyperventilation entraîne une vasoconstriction cérébrale suivie par une réduction du flux sanguin cérébral (CBF), de l'apport en oxygène (DO2), ainsi que de l'oxygénation tissulaire. Cette réduction de l'apport en O2 au cerveau pourrait potentiellement être responsable de la diminution de performance observée au cours d'exercices en condition d'hypoxie sévère. Les buts de cette thèse étaient de documenter l'effet de l'exposition aiguë et chronique à l'hypoxie sur le contrôle du CBF, ainsi que de déterminer le rôle du DO2 cérébral et de l'oxygénation tissulaire comme facteurs limitant la performance lors d'exercices en hypoxie sévère. Nous avons mesuré CBF, le contenu artériel en oxygène (CaO2), la concentration en hémoglobine ([Hb]), la pression partielle artérielle en O2 (PaO2), la réactivité cérébrovasculaire au CO2, la réponse ventilatoire au CO2, et l'autorégulation cérébrale sanguine (CA), et estimé DO2 cérébral (CBF x CaO2), au niveau de la mer (SL), au premier jour à 5.260 m (ALT1) et après seize jours d'acclimatation à 5.260 m (ALT16). Nous avons trouvé des augmentations du CBF et de la réactivité cérébrovasculaire au CO2 après une ascension à 5.260 m. Ces augmentations coïncidaient avec une réduction de l'autorégulation cérébrale. Simultanément, la PaO2 était grandement réduite, malgré l'augmentation de la ventilation (VE), résultant en une diminution de la CaO2. Après seize jours d'acclimatation à 5.260 m, le CBF revenait autour des valeurs observées au niveau de la mer, alors que la réactivité cérébrovasculaire au CO2 et la VE augmentaient par rapport à ALT1. L'acclimatation augmentait la PaO2, la concentration en hémoglobine, et donc la CaO2, mais n'améliorait pas l'autorégulation cérébrale, comparé à ALT1. Aucune différence n'était observée au niveau du DO2 cérébral entre SL, ALT1 et ALT16. Nos résultats montrent que le DO2 cérébral est maintenu constant lors d'expositions aiguë et chronique à 5.260m, ce qui s'explique par la réciprocité des variations du CBF et de la CaO2. Nous avons mesuré la vitesse d'écoulement du sang dans l'artère cérébrale moyenne (MCAv : un indice du CBF), le DO2 cérébral, la VE et la performance lors d'exercice incrémentaux jusqu'à épuisement sur cycloergomètre, ainsi que des contre-la-montres de 15 km en normoxie et en hypoxie sévère (11% O2, normobarique) ; avec ajout ou non de CO2 dans le mélange gazeux inspiré. Nous avons trouvé que MCAv était plus haute pendant l'exercice hypoxique, comparé à la normoxie alors que le DO2 cérébral était réduit. L'ajout de CO2 dans le gaz inspiré était efficace pour prévenir l'hypocapnie induite par l'hyperventilation, qui se développe à l'exercice intense, à la fois en normoxie et en hypoxie. Nous avons pu augmenter MCAv et le DO2 cérébral pendant l'exercice hypoxique, grâce à l'ajout de CO2. Cependant, nous avons augmenté la VE et la PaO2 (et probablement le travail respiratoire) à cause de l'augmentation du stimulus hypercapnique. Alors que nous avons, grâce à l'ajout de CO2, efficacement restauré le DO2 cérébral au cours de l'exercice en hypoxie à des valeurs obtenues en normoxie, nous n'avons observé aucune amélioration dans l'oxygénation du tissu cérébral ou de la performance. En conséquence, nos résultats ne soutiennent pas le rôle d'un DO2 cérébral réduit comme facteur limitant de la performance en hypoxie sévère.
Resumo:
Fragility fractures are recognized complication of diabetes, but yet the underlying mechanisms remain poorly understood. This is particularly pronounced in type 2 diabetes in which the propensity to fall is increased but bone mass is not necessarily low. Thus, whether factors implicated in the development of insulin resistance and diabetes directly impact on the musculoskeletal system remains to be investigated. PPARβ(-/-) mice have reduced metabolic activity and are glucose intolerant. We examined changes in bone and muscle in PPARβ(-/-) mice and investigated both the mechanism behind those changes with age as well as their response to exercise. Compared with their wild type, PPARβ(-/-) mice had an accelerated and parallel decline in both muscle and bone strength with age. These changes were accompanied by increased myostatin expression, low bone formation, and increased resorption. In addition, mesenchymal cells from PPARβ(-/-) had a reduced proliferation capacity and appeared to differentiate into more of an adipogenic phenotype. Concomitantly we observed an increased expression of PPARγ, characteristic of adipocytes. The anabolic responses of muscle and bone to exercise were also diminished in PPARβ(-/-) mice. The periosteal bone formation response to direct bone compression was, however, maintained, indicating that PPARβ controls periosteal bone formation through muscle contraction and/or metabolism. Taken together, these data indicate that PPARβ deficiency leads to glucose intolerance, decreased muscle function, and reduced bone strength. On a molecular level, PPARβ appears to regulate myostatin and PPARγ expression in muscle and bone, thereby providing potential new targets to reverse bone fragility in patients with metabolic disturbances.